Language

Exercise 2.1. According to the Guinness Book of World Records, the longest word in the English
language is floccinaucinihilipilification, meaning “The act or habit of describing or regarding
something as worthless”. This word was reputedly invented by a non-hippopotomonstrose-
squipedaliophobic student at Eton who combined four words in his Latin textbook. Prove Guin-
ness wrong by identifying a longer English word. An English speaker (familiar with floccinauci-
nihilipilification and the morphemes you use) should be able to deduce the meaning of your
word.

Solution. One option would be to add the suffix -able to make the adjective floccinaucini-
hilipilificationable, which would mean something like, “regarding the act or habit of describing
or regarding something as worthless”, although this is quite a floccinaucinihilipilificationable
word.

Exercise 2.2. Merriam-Webster’s word for the year for 2006 was truthiness, a word invented and
popularized by Stephen Colbert. Its definition is, “truth that comes from the gut, not books”.
Identify the morphemes that are used to build fruthiness, and explain, based on its composition,
what truthiness should mean.truthinessColbert, Stephen

Solution. The morphemes are “truth” + ”-y” + ”-ness”. “Truth” has many meanings, but the one
used here is “state of being the case (fact)”. The “-y” suffix makes a noun and adjective, meaning
the “like that of”, so “truthy” would be interpreted as “like the truth”. The word “truthy” does
appear in the dictionary. Its traditional definition is “Truthful, or seeming to be true” (http://en.
wiktionary.org/wiki/truthy). The “y” transforms into an ”i” in the spelling because of spelling rules
that transform mid-word “y”s into “i”s. The suffix “-ness” means “the state of being something”
(e.g., “dryness” is the state of being dry). So, “truthiness” should mean “the state of being like
the truth”, which is somewhat different from Colbert’s definition. Of course, the real meaning
of words is all about how people interpret them, and Colbert’s definition has been widespread

enough that most English speakers would interpret it the way he wants now.

Exercise 2.3. According to the Oxford English Dictionary, Thomas Jefferson is the first person
to use more than 60 words in the dictionary. Jeffersonian words include: (a) authentication, (b)
belittle, (c) indecipherable, (d) inheritability, (e) odometer, (f) sanction, (g) vomit-grass, and (h)
shag. For each Jeffersonian word, guess its derivation and explain whether or not its meaning
could be inferred from its components.Jefferson, Thomasodometershagbelittleauthentication-
belittle

Solution. Search the Oxford English Dictionary on-line (http://www.oed.com, only through uni-


http://en.wiktionary.org/wiki/truthy
http://en.wiktionary.org/wiki/truthy
http://www.oed.com

6 Exercises and Solutions

versity subscriptions) for definitions and origins of each word.

Exercise 2.4. Embiggening your vocabulary with anticromulent words ecdysiasts can grok.

a. Invent a new English word by combining common morphemes.

b. Get someone else to use the word you invented.

c. Convince Merriam-Webster to add your word to their dictionary.

Solution. There’s obviously no solution to this, but I should mention that embiggen and cromu-

lent were coined by an episode of The Simpsons, and ecdysiast was invented by H. L. Mencken
to mean “strip-tease artist” (adapting the Greek ekdysis).

Exercise 2.5. Draw a recursive transition network that defines the language of the whole num-
bers:0,1,2, ...

Solution. Since we expect a whole number to have at least one digit (the empty string is not
allowed), and cannot have leading zeros (e.g., 003 is not a valid whole number), we need a special
state to handle 0.

jumps

Alice

Bob runs slowly

Solution. There are 10 total strings, corresponding to each path through the RTN to the final S
state: Alice jumps, Alice eats slowly, Alice eats quickly, Alice runs slowly, Alice runs quickly, Bob
jumps, Bob eats slowly, Bob eats quickly, Bob runs slowly Bob runs quickly.

Exercise 2.7. Recursive transition networks.

a. How many nodes are needed for a recursive transition network that can produce exactly 8
strings?

Solution. Only 2 nodes are needed to produce any number of strings! We can always have an
arbitrary number of edges between the two nodes.



Chapter 2. Language— Exercises and Solutions 7

b. How many edges are needed for a recursive transition network that can produce exactly 8
strings?

Solution. If there is only one final state allowed, the minimum number of edges is 6. To
produce 8 total strings, we need two choices three times (2 x 2 x 2 = 8).

If there can be more than one final state, though, it is possible to use only five edges!

0 0
00

I believe there is no RTN with fewer than five edges that can produce exactly 8 strings, but a
convincing proof that this is the case is worth a gold star.

c. Given a whole number n, how many edges are needed for a recursive transition network
that can produce exactly n strings?

Solution. Unknown (at least to me)! This is quite tricky, hence the

Exercise 2.8. Show the sequence of stacks used in generating the string “Alice and Bob and Alice
runs” using the network in Figure 2.3 with the alternate Noun subnetwork from Figure 2.4.

Solution.

Exercise 2.9. Identify a string that cannot be produced using the RTN from Figure 2.3 with the
alternate Noun subnetwork from Figure 2.4 without the stack growing to contain five elements.

Solution. For each and, the stack needs to grow to store either the N1 or N2 node (and one more
node for the original Noun). So, an example of a sentence that requires a stack depth of five is
Alice and Alice and Alice and Alice and Alice runs.

Exercise 2.10. The procedure given for traversing RTNs assumes that a subnetwork path always
stops when a final node is reached. Hence, it cannot follow all possible paths for an RTN where
there are edges out of a final node. Describe a procedure that can follow all possible paths, even
for RTNs that include edges from final nodes.

Solution. To allow continuing from a final node, we need to change step 3 to be: If the popped
node, N, is a final node either return to step 2 or continue to step 4. Note that this procedure,
as well as the original one, is nondeterministic. That means we cannot executed it by simply
following the steps mechanically, but instead must make choices. (In the original procedure,
the choice was hidden in the Select at the beginning of step 3 — the procedure does not specify
which edge to select when there are several choices.) One way to mechanically execute a non-
deterministic procedure is to systematically try all possible choices until one is found that leads



8 Exercises and Solutions

to the desired solution (in this case, that is ending with an empty stack and the desired output).

Exercise 2.11. Suppose we replaced the first rule (Number ::=- Digit MoreDigits) in the whole
numbers grammar with: Number ::= MoreDigits Digit.

a. How does this change the parse tree for the derivation of 37?2 Draw the parse tree that results
from the new grammar.

Solution.

Number
/\
MoreDigits  Digit

| |

Number 7
/\

Digit  MoreDigits

| |
3 €

b. Does this change the language? Either show some string that is in the language defined by
the modified grammar but not in the original language (or vice versa), or argue that both
grammars generate the same strings.

Solution. Although this changes the way numbers are parsed, it does not change the lan-
guage. The production Number ::=- Digit MoreDigits generates the same strings as Number
::= MoreDigits Digit since MoreDigits is the same in both, and it generates a sequence of zero
or more digits. The difference is whether the single digit produced by Digit is before or after
the sequence of zero or more digits produces by MoreDigits. Since all digits are interchange-
able, though, this produces the same set of strings.

Exercise 2.12. The grammar for whole numbers we defined allows strings with non-standard
leading zeros such as “000” and “00005”. Devise a grammar that produces all whole numbers
(including “0”), but no strings with unnecessary leading zeros.

Solution. To eliminate the leading zeros, we need to add a new nonterminal for NonZeroDigit,
and a special rule for 0.

Number =0

Number = NonZeroDigit MoreDigits
MoreDigits =

MoreDigits ::= Number

Digit =0

Digit = NonZeroDigit
NonZeroDigit:= 1|2]|---|9

Exercise 2.13. Define a BNF grammar that describes the language of decimal numbers (the
language should include 3.14159, 0.423, and 1120 but not 1.2.3).

Solution. We assume the Number definition from Example 2.1.



Chapter 2. Language— Exercises and Solutions 9

Decimal ::= Number OptMantissa
OptMantissa ::= €
OptMantissa ::= . Number

This does allow numbers like 003.200. A stricter definition of decimal numbers that disallows
leading zeros would use the Number definition from the previous exercise, but would need to
define a FullNumber nonterminal also to allow leading zeros to the right of the decimal point.

Exercise 2.14. The BNF grammar below (extracted from Paul Mockapetris, Domain Names -
Implementation and Specification, IETF RFC 1035) describes the language of domain names on
the Internet.

Domain ::=> SubDomainList

SubDomainList ::= Label | SubDomainList. Label

Label ::= Letter MoreLetters

MoreLetters  ::= LetterHyphens LetterDigit | €
LetterHyphens ::= LDHyphen | LDHyphen LetterHyphens |
LDHyphen ::= LetterDigit | -

LetterDigit ::= Letter | Digit

Letter = A|B|...|Z|a|b]|...|z

Digit z= 0]1]2]3|4|5|6]7[8]9

a. Show a derivation for www.virginia.edu in the grammar.

Solution. Note that the grammar is ambiguous, so there are many other ways to produce the

same string. Here is one possible derivation:
Domain::= SubDomainList

SubDomainList. Label

SubDomainlList . Letter MoreLetters

SubDomainlList . e MoreLetters

SubDomainlList . e LetterHyphens LetterDigit

SubDomainList. e LDHyphen LetterHyphens LetterDigit
SubDomainlList . e LetterDigit LetterHyphens LetterDigit
SubDomainlList. e Letter LetterHyphens LetterDigit
SubDomainlList . e d LetterHyphens LetterDigit

SubDomainlList. e d LetterDigit (using LetterHyphens ::=¢)
SubDomainlList. e d Letter

SubDomainList. edu

SubDomainList. Label . ed u (we fast-forward the steps for Label ::=-* virginia)
SubDomainList.virginia.edu

Label.virginia.edu

www.virginia.edu (fast-forwarding Label ::=* w w w)

*

NN AN A A A A

b. According to the grammar, which of the following are valid domain names: (1) tj, (2) a.-b.c,
(3) a-a.b-b.c-c, (4) a.g.r.e.a.t.d.o.m.a.i.n-.

Solution.

(1) tj is a grammatically valid domain name: Domain ::=SubDomainList ::= Label ::=* tj.



10 Exercises and Solutions

(2) a.-b.c is not a grammatically valid domain name. The Label cannot produce the string
-b since the only production for Label is Label ::=- Letter MoreLetters and Letter cannot
produce -.

(3) a-a.b-b.c-c is a grammatically valid domain name: Domain ::=-SubDomainList ::=* La-
bel. Label. Label ::=* a-a.b-b.c-c.

(4) a.g.r.e.a.t.d.o.m.a.i.n- is a not grammatically valid domain name. The Label productions
cannot produce a label that ends in a - since MoreLetters ::= LetterHyphens LetterDigit
| € alabel must end in a letter or digit.

Exercise 2.15. Produce an RTN that defines the same languages as the BNF grammar from
Exercise 2.14.

Solution.
Label
Label /\ Sub-
\w\: 4 Domain
Letter

Letter

Letter

Note the need for the bottom edge from Label to EndLabel that is necessary to allow single-letter
labels.

Exercise 2.16. Prove that BNF grammars are as powerful as RTNs by devising a procedure
that can construct a BNF grammar that defines the same language as any input RTN.

Solution.



