
6
Machines

It is unworthy of excellent people to lose hours like slaves in the labor of
calculation which could safely be relegated to anyone else if machines were used.

Gottfried Wilhelm von Leibniz, 1685

The first five chapters focused on ways to use language to describe procedures.
Although finding ways to describe procedures succinctly and precisely would
be worthwhile even if we did not have machines to carry out those procedures,
the tremendous practical value we gain from being able to describe procedures
comes from the ability of computers to carry out those procedures astoundingly
quickly, reliably, and inexpensively. As a very rough approximation, a typical
laptop gives an individual computing power comparable to having every living
human on the planet working for you without ever making a mistake or needing
a break.

This chapter introduces computing machines. Computers are different from
other machines in two key ways:

1. Whereas other machines amplify or extend our physical abilities, comput-
ers amplify and extend our mental abilities.

2. Whereas other machines are designed for a few specific tasks, computers
can be programmed to perform many tasks. The simple computer model
introduced in this chapter can perform all possible computations.

The next section gives a brief history of computing machines, from prehistoric
calculating aids to the design of the first universal computers. Section 6.2 ex-
plains how machines can implement logic. Section 6.3 introduces a simple ab-
stract model of a computing machine that is powerful enough to carry out any
algorithm.

We provide only a very shallow introduction to how machines can implement
computations. Our primary goal is not to convey the details of how to design
and build an efficient computing machine (although that is certainly a worthy
goal that is often pursued in later computing courses), but to gain sufficient un-
derstanding of the properties nearly all conceivable computing machines share
to be able to predict properties about the costs involved in carrying out a par-
ticular procedure. The following chapters use this to reason about the costs of
various procedures. In Chapter 12, we use it to reason about the range of prob-
lems that can and cannot be solved by any mechanical computing machine.



106 6.1. History of Computing Machines

6.1 History of Computing Machines
The goal of early machines was to carry out some physical process with less ef-
fort than would be required by a human. These machines took physical things as
inputs, performed physical actions on those things, and produced some phys-
ical output. For instance, a cotton gin takes as input raw cotton, mechanically
separates the cotton seed and lint, and produces the separated products as out-
put.

The first big leap toward computing machines was the development of machines
whose purpose is abstract rather than physical. Instead of producing physical
things, these machines used physical things to represent information. The out-
put of the machine is valuable because it can be interpreted as information, not
for its direct physical effect.

Our first example is not a machine, but using fingers to count. The base ten
number system used by most human cultures reflects using our ten fingers for
counting.1 Successful shepherds needed to find ways to count higher than ten.
Shepherds used stones to represent numbers, making the cognitive leap of using
a physical stone to represent some quantity of sheep. A shepherd would count
sheep by holding stones in his hand that represent the number of sheep.

More complex societies required more counting and more advanced calculat-
ing. The Inca civilization in Peru used knots in collections of strings known as
khipu to keep track of thousands of items for a hierarchical system of taxation.
Many cultures developed forms of abaci, including the ancient Mesopotamians
and Romans. An abacus performs calculations by moving beads on rods. The
Chinese suan pan (“calculating plate”) is an abacus with a beam subdividing

Suan Pan the rods, typically with two beads above the bar (each representing 5), and five
beads below the beam (each representing 1). An operator can perform addition,
subtraction, multiplication, and division by following mechanical processes us-
ing an abacus.

All of these machines require humans to move parts to perform calculations.
As machine technology improved, automatic calculating machines were built
where the operator only needed to set up the inputs and then turn a crank or
use some external power source to perform the calculation. The first automatic
calculating machine to be widely demonstrated was the Pascaline, built by then

Pascaline
David Monniaux

nineteen-year old French mathematician Blaise Pascal (also responsible for Pas-
cal’s triangle from Exploration 5.1) to replace the tedious calculations he had to
do to manage his father’s accounts. The Pascaline had five wheels, each repre-
senting one digit of a number, linked by gears to perform addition with carries.
Gottfried Wilhelm von Leibniz built the first machine capable of performing all
four basic arithmetic operations (addition, subtraction, multiplication, and di-
vision) fully mechanically in 1694.

Over the following centuries, more sophisticated mechanical calculating ma-
chines were developed but these machines could still only perform one opera-
tion at a time. Performing a series of calculations was a tedious and error-prone
process in which a human operator had to set up the machine for each arith-

1Not all human cultures use base ten number systems. For example, many cultures including the
Maya and Basque adopted base twenty systems counting both fingers and toes. This was natural in
warm areas, where typical footwear left the toes uncovered.



Chapter 6. Machines 107

metic operation, record the result, and reset the machine for the next calcula-
tion.

The big breakthrough was the conceptual leap of programmability. A machine
is programmable if its inputs not only control the values it operates on, but the
operations it performs.

The first programmable computing machine was envisioned (but never suc-
cessfully built) in the 1830s by Charles Babbage. Babbage was born in London
in 1791 and studied mathematics at Cambridge. In the 1800s, calculations were
done by looking up values in large books of mathematical and astronomical ta-
bles. These tables were computed by hand, and often contained errors. The
calculations were especially important for astronomical navigation, and when
the values were incorrect a ship would miscalculate its position at sea (some-
times with tragic consequences). We got nothing for

our £17,000 but Mr.
Babbage’s
grumblings. We
should at least have
had a clever toy for
our money.
Richard Sheepshanks,
Letter to the Board of
Visitors of the
Greenwich Royal
Observatory, 1854

Babbage sought to develop a machine to mechanize the calculations to compute
these tables. Starting in 1822, he designed a steam-powered machine known
as the Difference Engine to compute polynomials needed for astronomical cal-
culations using Newton’s method of successive differences (a generalization of
Heron’s method from Exploration 4.1). The Difference Engine was never fully
completed. but led Babbage to envision a more general calculating machine.

This new machine, the Analytical Engine, designed between 1833 and 1844, was
the first general-purpose computer envisioned. It was designed so that it could
be programmed to perform any calculation. One breakthrough in Babbage’s de-
sign was to feed the machine’s outputs back into its inputs. This meant the en-
gine could perform calculations with an arbitrary number of steps by cycling
outputs back through the machine.

The Analytical Engine was programmed using punch cards, based on the cards
that were used by Jacquard looms. Each card could describe an instruction such
as loading a number into a variable in the store, moving values, performing
arithmetic operations on the values in the store, and, most interestingly, jump-
ing forward and backwards in the instruction cards. The Analytical Engine sup-

Analytical Engine
Science Museum, London

ported conditional jumps where the jump would be taken depending on the
state of a lever in the machine (this is essentially a simple form of the if expres-
sion).

In 1842, Charles Babbage visited Italy and described the Analytical Engine to
Luigi Menabrea, an Italian engineer, military officer, and mathematician who
would later become Prime Minister of Italy. Menabrea published a description
of Babbage’s lectures in French. Ada Augusta Byron King (also known as Ada,
Countess of Lovelace) translated the article into English.

In addition to the translation, Ada added a series of notes to the article. The
notes included a program to compute Bernoulli numbers, the first detailed pro-
gram for the Analytical Engine. Ada was the first to realize the importance and
interest in creating the programs themselves, and envisioned how programs
could be used to do much more than just calculate mathematical functions.
This was the first computer program ever described, and Ada is recognized as
the first computer programmer.

Ada
Despite Babbage’s design, and Ada’s vision, the Analytical Engine was never com-



108 6.2. Mechanizing Logic

pleted. It is unclear whether the main reason for the failure to build a working
Analytical Engine was due to limitations of the mechanical components avail-
able at the time, or due to Babbage’s inability to work with his engineer collabo-
rator or to secure continued funding.On two occasions I

have been asked by
members of

Parliament, “Pray,
Mr. Babbage, if you

put into the
machine wrong
figures, will the

right answers come
out?” I am not able

rightly to
apprehend the kind

of confusion of ideas
that could provoke

such a question.
Charles Babbage

The first working programmable computers would not appear for nearly a hun-
dred years. Advances in electronics enabled more reliable and faster compo-
nents than the mechanical components used by Babbage, and the desperation
brought on by World War II spurred the funding and efforts that led to working
general-purpose computing machines.

The remaining conceptual leap is to treat the program itself as data. In Bab-
bage’s Analytical Engine, the program is a stack of cards and the data are num-
bers stored in the machine. The machine cannot alter its own program.

The idea of treating the program as just another kind of data the machine can
process was developed in theory by Alan Turing in the 1930s (Section 6.3 of
this chapter describes his model of computing), and first implemented by the
Manchester Small-Scale Experimental Machine (built by a team at Victoria Uni-
versity in Manchester) in 1948.

This computer (and all general-purpose computers in use today) stores the pro-
gram itself in the machine’s memory. Thus, the computer can create new pro-
grams by writing into its own memory. This power to change its own program is
what makes stored-program computers so versatile.

Exercise 6.1. Babbage’s design for the Analytical Engine called for a store hold-
ing 1000 variables, each of which is a 50-digit (decimal) number. How many bits
could the store of Babbage’s Analytical Engine hold?

6.2 Mechanizing Logic
This section explains how machines can compute, starting with simple logical
operations. We use Boolean logic, in which there are two possible values: trueBoolean logic

(often denoted as 1), and false (often denoted as 0). The Boolean datatype in
Scheme is based on Boolean logic. Boolean logic is named for George Boole, a
self-taught British mathematician who published An investigation into the Laws
of Thought, on Which are founded the Mathematical Theories of Logic and Prob-
abilities in 1854. Before Boole’s work, logic focused on natural language dis-
course. Boole made logic a formal language to which the tools of mathematics
could be applied.

We illustrate how logical functions can be implemented mechanically by de-
scribing some logical machines. Modern computers use electrons to compute
because they are small (more than a billion billion billion (1031) electrons fit
within the volume of a grain of sand), fast (approaching the speed of light), and
cheap (more than a billion billion (1022) electrons come out of a power outlet for
less than a cent). They are also invisible and behave in somewhat mysterious

George Boole ways, however, so we will instead consider how to compute with wine (or your
favorite colored liquid). The basic notions of mechanical computation don’t de-
pend on the medium we use to compute, only on our ability to use it to represent
values and to perform simple logical operations.



Chapter 6. Machines 109

6.2.1 Implementing Logic
To implement logic using a machine, we need physical ways of representing the
two possible values. We use a full bottle of wine to represent true and an empty
bottle of wine to represent false. If the value of an input is true, we pour a bottle
of wine in the input nozzle; for false inputs we do nothing. Similarly, electronic
computers typically use presence of voltage to represent true, and absence of
voltage to represent false.

And. A logical and function takes two inputs and produces one output. The
output is true if both of the inputs are true; otherwise the output is false. We
define a logical-and procedure using an if expression:2

(define (logical-and a b) (if a b false))

To design a mechanical implementation of the logical and function, we want a
simpler definition that does not involve implementing something as complex as
an if expression.

A different way to define a function is by using a table to show the corresponding
output value for each possible pair of input values. This approach is limited to
functions with a small number of possible inputs; we could not define addition
on integers this way, since there are infinitely many possible different numbers
that could be used as inputs. For functions in Boolean logic, there are only two
possible values for each input (true and false) so it is feasible to list the outputs
for all possible inputs.

We call a table defining a Boolean function a truth table. If there is one input, the truth table

table needs two entries, showing the output value for each possible input. When
there are two inputs, the table needs four entries, showing the output value for
all possible combinations of the input values. The truth table for the logical and
function is:

A B (and A B)
false false false
true false false
false true false
true true true

We design a machine that implements the function described by the truth ta-
ble: if both inputs are true (represented by full bottles of wine in our machine),
the output should be true; if either input is false, the output should be false (an
empty bottle). One way to do this is shown in Figure 6.1. Both inputs pour into
a basin. The output nozzle is placed at a height corresponding to one bottle of
wine in the collection basin, so the output bottle will fill (representing true), only
if both inputs are true.

The design in Figure 6.1 would probably not work very well in practice. Some
of the wine is likely to spill, so even when both inputs are true the output might
not be a full bottle of wine. What should a 3

4 full bottle of wine represent? What
about a bottle that is half full?

2Scheme provides a special form and that performs the same function as the logical and function.
It is a special form, though, since the second input expression is not evaluated unless the first input
expression evaluates to true.



110 6.2. Mechanizing Logic

Figure 6.1. Computing and with wine.

The solution is the digital abstraction. Although there are many different quan-digital abstraction

tities of wine that could be in a bottle, regardless of the actual quantity the value
is interpreted as only one of two possible values: true or false. If the bottle has
more than a given threshold, say half full, it represents true; otherwise, it repre-
sents false. This means an infinitely large set of possible values are abstracted as
meaning true, so it doesn’t matter which of the values above half full it is.

The digital abstraction provides a transition between the continuous world of
physical things and the logical world of discrete values. It is much easier to de-
sign computing systems around discrete values than around continuous values;
by mapping a range of possible continuous values to just two discrete values, we
give up a lot of information but gain in simplicity and reliability. Nearly all com-
puting machines today operate on discrete values using the digital abstraction.

Or. The logical or function takes two inputs, and outputs true if any of the
inputs are true:3

A B (or A B)
false false false
true false true
false true true
true true true

Try to invent your own design for a machine that computes the or function be-
fore looking at one solution in Figure 6.2(a).

Implementing not. The output of the not function is the opposite of the value
of its input:

A (not A)
false true
true false

3Scheme provides a special form or that implements the logical or function, similarly to the and
special form. If the first input evaluates to true, the second input is not evaluated and the value of
the or expression is true.



Chapter 6. Machines 111

It is not possible to produce a logical not without some other source of wine; it
needs to create wine (to represent true) when there is none input (representing
false). To implement the not function, we need the notion of a source current
and a clock. The source current injects a bottle of wine on each clock tick. The
clock ticks periodically, on each operation. The inputs need to be set up before
the clock tick. When the clock ticks, a bottle of wine is sent through the source
current, and the output is produced. Figure 6.2(b) shows one way to implement
the not function.

(a) Computing or with wine. (b) Computing not with wine.

Figure 6.2. Computing logical or and not with wine
(a) The or machine is similar to the and machine in design, except we move the output nozzle
to the bottom of the basin, so if either input is true, the output is true; when both inputs are
true, some wine is spilled but the logical result is still true.

(b) The not machine uses a clock. Before the clock tick, the input is set. If the input is true, the
float is lifted, blocking the source opening; if the input i false, the float rests on the bottom of
the basin. When the clock ticks, the source wine is injected. If the float is up (because of the true
input), the opening is blocked, and the output is empty (false). If the float is down (because of
the false input), the opening is open, the source wine will pour across the float, filling the output
(representing true). (This design assumes wine coming from the source does not leak under the
float, which might be hard to build in a real system.)

6.2.2 Composing Operations
We can implement and, or and not using wine, but is that enough to perform
interesting computations? In this subsection, we consider how simple logical
functions can be combined to implement any logical function; in the following
subsection, we see how basic arithmetic operations can be built from logical
functions.

We start by making a three-input conjunction function. The and3 of three inputs
is true if and only if all three inputs are true. One way to make the three-input
and3 is to follow the same idea as the two-input and where all three inputs pour
into the same basin, but make the basin with the output nozzle above the two
bottle level.

Another way to implement a three-input and3 is to compose two of the two-
input and functions, similarly to how we composed procedures in Section 4.2.



112 6.2. Mechanizing Logic

Building and3 by composing two two-input and functions allows us to construct
a three-input and3 without needing to design any new structures, as shown in
Figure 6.3. The output of the first and function is fed into the second and func-
tion as its first input; the third input is fed directly into the second and function
as its second input. We could write this as (and (and A B) C).

Figure 6.3. Computing and3 by composing two and functions.

Composing logical functions also allows us to build new logical functions. Con-
sider the xor (exclusive or) function that takes two inputs, and has output true
when exactly one of the inputs is true:

A B (xor A B)
false false false
true false true
false true true
true true false

Can we build xor by composing the functions we already have?

The xor is similar to or, except for the result when both inputs are true. So, we
could compute (xor A B) as (and (or A B) (not (and A B))). Thus, we can build
an xor machine by composing the designs we already have for and, or, and not.

We can compose any pair of functions where the outputs for the first function
are consistent with the input for the second function. One particularly impor-
tant function known as nand results from not and and:

A B (nand A B)
false false true
true false true
false true true
true true false



Chapter 6. Machines 113

All Boolean logic functions can be implemented using just the nand function.
One way to prove this is to show how to build all logic functions using just nand.
For example, we can implement not using nand where the one input to the not
function is used for both inputs to the nand function:

(not A)≡ (nand A A)

Now that we have shown how to implement not using nand, it is easy to see how
to implement and using nand:

(and A B)≡ (not (nand A B))

Implementing or is a bit trickier. Recall that A or B is true if any one of the inputs
is true. But, A nand B is true if both inputs are false, and false if both inputs are
true. To compute or using only nand functions, we need to invert both inputs:

(or A B)≡ (nand (not A) (not B))

To complete the proof, we would need to show how to implement all the other
Boolean logic functions. We omit the details here, but leave some of the other
functions as exercises. The universality of the nand function makes it very useful
for implementing computing devices. Trillions of nand gates are produced in
silicon every day.

Exercise 6.2. Define a Scheme procedure, logical-or , that takes two inputs and
outputs the logical or of those inputs.

Exercise 6.3. What is the meaning of composing not with itself? For example,
(not (not A)).

Exercise 6.4. Define the xor function using only nand functions.

Exercise 6.5. [?] Our definition of (not A) as (nand A A) assumes there is a
way to produce two copies of a given input. Design a component for our wine
machine that can do this. It should take one input, and produce two outputs,
both with the same value as the input. (Hint: when the input is true, we need
to produce two full bottles as outputs, so there must be a source similarly to the
not component.)

Exercise 6.6. [?] The digital abstraction works fine as long as actual values stay
close to the value they represent. But, if we continue to compute with the out-
puts of functions, the actual values will get increasingly fuzzy. For example, if
the inputs to the and3 function in Figure 6.3 are initially all 3

4 full bottles (which
should be interpreted as true), the basin for the first and function will fill to 1 1

2 ,
so only 1

2 bottle will be output from the first and. When combined with the third
input, the second basin will contain 1 1

4 bottles, so only 1
4 will spill into the output

bottle. Thus, the output will represent false, even though all three inputs repre-
sent true. The solution to this problem is to use an amplifier to restore values to



114 6.2. Mechanizing Logic

their full representations. Design a wine machine amplifier that takes one input
and produces a strong representation of that input as its output. If that input
represents true (any value that is half full or more), the amplifier should output
true, but with a strong, full bottle representation. If that input represents false
(any value that is less than half full), the amplifier should output a strong false
value (completely empty).

6.2.3 Arithmetic
Not only is the nand function complete for Boolean logical functions, it is also
enough to implement all discrete arithmetic functions. First, consider the prob-
lem of adding two one-bit numbers.

There are four possible pairs of inputs:

A B r1 r0
0 + 0 = 0 0
0 + 1 = 0 1
1 + 0 = 0 1
1 + 1 = 1 0

We can compute each of the two output bits as a logical function of the two input
bits. The right output bit, r0, is 1 if exactly one of the input bits is 1:

r0 = (or (and (not A) B) (and A (not B)))

This is what the xor function computes, so:

r0 = (xor A B)

The left output bit, r1, is 0 for all inputs except when both inputs are 1:

r1 = (and A B)

Since we have already seen how to implement and, or, xor, and not using only
nand functions, this means we can implement a one-bit adder using only nand
functions.

Adding larger numbers requires more logical functions. Consider adding two
n-bit numbers:

an−1 an−2 · · · a1 a0
+ bn−1 bn−2 · · · b1 b0

= rn rn−1 rn−2 · · · r1 r0

The elementary school algorithm for adding decimal numbers is to sum up the
digits from right to left. If the result in one place is more than one digit, the
additional tens are carried to the next digit. We use ck to represent the carry digit
in the kth column.



Chapter 6. Machines 115

cn cn−1 cn−2 · · · c1
an−1 an−2 · · · a1 a0

+ bn−1 bn−2 · · · b1 b0

= rn rn−1 rn−2 · · · r1 r0

The algorithm for addition is:

• Initially, c0 = 0.
• Repeat for each digit k from 0 to n:

1. v1v0 = ak + bk + ck (if there is no digit ak or bk use 0).
2. rk = v0.
3. ck+1 = v1.

This is perhaps the first interesting algorithm most people learn: if followed cor-
rectly, it is guaranteed to produce the correct result, and to always finish, for any
two input numbers.

Step 1 seems to require already knowing how to perform addition, since it uses
+. But, the numbers added are one-digit numbers (and ck is 0 or 1). Hence, there
are a finite number of possible inputs for the addition in step 1: 10 decimal digits
for ak × 10 decimal digits for bk × 2 possible values of ck. We can memorize the
100 possibilities for adding two digits (or write them down in a table), and easily
add one as necessary for the carry. Hence, computing this addition does not
require a general addition algorithm, just a specialized method for adding one-
digit numbers.

We can use the same algorithm to sum binary numbers, except it is simpler since
there are only two binary digits. Without the carry bit, the result bit, rk, is 1 if (xor
ak bk). If the carry bit is 1, the result bit should flip. So,

rk = (xor (xor ak bk) ck)

This is the same as adding ak + bk + ck base two and keeping only the right digit.

The carry bit is 1 if the sum of the input bits and previous carry bit is greater than
1. This happens when any two of the bits are 1:

ck+1 = (or (and ak bk) (and ak ck) (and bk ck))

As with elementary school decimal addition, we start with c0 = 0, and proceed
through all the bits from right to left.

We can propagate the equations through the steps to find a logical equation for
each result bit in terms of just the input bits. First, we simplify the functions for
the first result and carry bits based on knowing c0 = 0:

r0 = (xor (xor a0 b0) c0) = (xor a0 b0)
c1 = (or (and a0 b0) (and a0 c0) (and b0 c0)) = (and a0 b0)

Then, we can derive the functions for r1 and c2:

r1 = (xor (xor a1 b1) c1) = (xor (xor a1 b1) (and a0 b0))
c2 = (or (and a1 b1) (and a1 c1) (and b1 c1))

= (or (and a1 b1) (and a1 (and a0 b0)) (and b1 (and a0 b0)))



116 6.3. Modeling Computing

As we move left through the digits, the terms get increasingly complex. But,
for any number of digits, we can always find functions for computing the result
bits using only logical functions on the input bits. Hence, we can implement
addition for any length binary numbers using only nand functions.

We can also implement multiplication, subtraction, and division using only nand
functions. We omit the details here, but the essential approach of breaking down
our elementary school arithmetic algorithms into functions for computing each
output bit works for all of the arithmetic operations.

Exercise 6.7. Adding logically.

a. What is the logical formula for r3?

b. Without simplification, how many functions will be composed to compute
the addition result bit r4?

c. [?] Is it possible to compute r4 with fewer logical functions?

Exercise 6.8. Show how to compute the result bits for binary multiplication of
two 2-bit inputs using only logical functions.

Exercise 6.9. [?] Show how to compute the result bits for binary multiplication
of two inputs of any length using only logical functions.

6.3 Modeling Computing
By composing the logic functions, we could build a wine computer to perform
any Boolean function. And, we can perform any discrete arithmetic function
using only Boolean functions. For a useful computer, though, we need pro-
grammability. We would like to be able to make the inputs to the machine de-
scribe the logical functions that it should perform, rather than having to build
a new machine for each desired function. We could, in theory, construct such a
machine using wine, but it would be awfully complicated. Instead, we consider
programmable computing machines abstractly.

Recall in Chapter 1, we defined a computer as a machine that can:

1. Accept input.
2. Execute a mechanical procedure.
3. Produce output.

So, our model of a computer needs to model these three things.

Modeling input. In real computers, input comes in many forms: typing on a
keyboard, moving a mouse, packets coming in from the network, an accelerom-
eter in the device, etc.

For our model, we want to keep things as simple as possible, though. From a
computational standpoint, it doesn’t really matter how the input is collected. We
can represent any discrete input with a sequence of bits. Input devices like key-
boards are clearly discrete: there are a finite number of keys, and each key could
be assigned a unique number. Input from a pointing device like a mouse could
be continuous, but we can always identify some minimum detected movement



Chapter 6. Machines 117

distance, and record the mouse movements as discrete numbers of move units
and directions. Richer input devices like a camera or microphone can also pro-
duce discrete output by discretizing the input using a process similar to the im-
age storage in Chapter 1. So, the information produced by any input device can
be represented by a sequence of bits. The virtual

shopping spree was
a first for the
President who has a
reputation for being
“technologically
challenged.” But
White House
sources insist that
the First Shopper
used his own laptop
and even “knew
how to use the
mouse.”
BusinessWeek,
22 December 1999

For real input devices, the time an event occurs is often crucial. When playing a
video game, it does not just matter that the mouse button was clicked, it matters
a great deal when the click occurs. How can we model inputs where time matters
using just our simple sequence of bits?

One way would be to divide time into discrete quanta and encode the input as
zero or one events in each quanta. A more efficient way would be to add a times-
tamp to each input. The timestamps are just numbers (e.g., the number of mil-
liseconds since the start time), so can be written down just as sequences of bits.

Thus, we can model a wide range of complex input devices with just a finite
sequence of bits. The input must be finite, since our model computer needs all
the input before it starts processing. This means our model is not a good model
for computations where the input is infinite, such as a web server intended to
keep running and processing new inputs (e.g., requests for a web page) forever.
In practice, though, this isn’t usually a big problem since we can make the input
finite by limiting the time the server is running in the model.

A finite sequence of bits can be modeled using a long, narrow, tape that is di-
vided into squares, where each square contains one bit of the input.

Modeling output. Output from computers effects the physical world in lots of
very complex ways: displaying images on a screen, printing text on a printer,
sending an encoded web page over a network, sending an electrical signal to an
anti-lock brake to increase the braking pressure, etc.

We don’t attempt to model the physical impact of computer outputs; that would
be far too complicated, but it is also one step beyond modeling the computa-
tion itself. Instead, we consider just the information content of the output. The
information in a picture is the same whether it is presented as a sequence of bits
or an image projected on a screen, its just less pleasant to look at as a sequence
of bits. So, we can model the output just like we modeled the input: a sequence
of bits written on a tape divided into squares.

Modeling processing. Our processing model should be able to model every
possible mechanical procedure since we want to model a universal computer,
but should be as simple as possible.

One thing our model computer needs is a way to keep track of what it is do-
ing. We can think of this like scratch paper: a human would not be able to do a
long computation without keeping track of intermediate values on scratch pa-
per, and a computer has the same need. In Babbage’s Analytical Engine, this
was called the store, and divided into a thousand variables, each of which could
store a fifty decimal digit number. In the Apollo Guidance Computer, the work-
ing memory was divided into banks, each bank holding 1024 words. Each word
was 15 bits (plus one bit for error correction). In current 32-bit processors, such
as the x86, memory is divided into pages, each containing 1024 32-bit words.



118 6.3. Modeling Computing

For our model machine, we don’t want to have arbitrary limits on the amount of
working storage. So, we model the working storage with an infinitely long tape.
Like the input and output tapes, it is divided into squares, and each square can
contain one symbol. For our model computer, it is useful to think about having
an infinitely long tape, but of course, no real computer has infinite amounts of
working storage. We can, however, imagine continuing to add more memory to
a real computer as needed until we have enough to solve a given problem, and
adding more if we need to solve a larger problem.

Our model now involves separate tapes for input, output, and a working tape.
We can simplify the model by using a single tape for all three. At the beginning of
the execution, the tape contains the input (which must be finite). As processing
is done, the input is read and the tape is used as the working tape. Whatever is
on the tape and the end of the execution is the output.

We also need a way for our model machine to interface with the tape. We imag-
ine a tape head that contacts a single square on the tape. On each processing
step, the tape head can read the symbol in the current square, write a symbol in
the current square, and move one square either left or right.

The final thing we need is a way to model actually doing the processing. In our
model, this means controlling what the tape head does: at each step, it needs to
decide what to write on the tape, and whether to move left or right, or to finish
the execution.

In early computing machines, processing meant performing one of the basic
arithmetic operations (addition, subtraction, multiplication, or division). We
don’t want to have to model anything as complex as multiplication in our model
machine, however. The previous section showed how addition and other arith-
metic operations can be built from simpler logical operations. To carry out a
complex operation as a composition of simple operations, we need a way to
keep track of enough state to know what to do next. The machine state is just
a number that keeps track of what the machine is doing. Unlike the tape, it is
limited to a finite number. There are two reasons why the machine state num-
ber must be finite: first, we need to be able to write down the program for the
machine by explaining what it should do in each state, which would be difficult
if there were infinitely many states.

We also need rules to control what the tape head does. We can think of each
rule as a mapping from the current observed state of the machine to what to
do next. The input for a rule is the symbol in the current tape square and the
current state of the machine; the output of each rule is three things: the symbol
to write on the current tape square, the direction for the tape head to move (left,
right, or halt), and the new machine state. We can describe the program for the
machine by listing the rules. For each machine state, we need a rule for each
possible symbol on the tape.

6.3.1 Turing Machines
This abstract model of a computer was invented by Alan Turing in the 1930s
and is known as a Turing Machine. Turing’s model is depicted in Figure 6.4.
An infinite tape divided into squares is used as the input, working storage, and
output. The tape head can read the current square on the tape, write a symbol
into the current tape square, and move left or right one position. The tape head



Chapter 6. Machines 119

Figure 6.4. Turing Machine model.

keeps track of its internal state, and follows rules matching the current state and
current tape square to determine what to do next.

Turing’s model is by far the most widely used model for computers today. Tur-
ing developed this model in 1936, before anything resembling a modern com-
puter existed. Turing did not develop his model as a model of an automatic
computer, but instead as a model for what could be done by a human following
mechanical rules. He devised the infinite tape to model the two-dimensional
graph paper students use to perform arithmetic. He argued that the number
of machine states must be limited by arguing that a human could only keep a
limited amount of information in mind at one time.

Turing’s model is equivalent to the model we described earlier, but instead of
using only bits as the symbols on the tape, Turing’s model uses members of any
finite set of symbols, known as the alphabet of the tape. Allowing the tape al-
phabet to contain any set of symbols instead of just the two binary digits makes
it easier to describe a Turing Machine that computes a particular function, but
does not change the power of the model. That means, every computation that
could be done with a Turing Machine using any alphabet set, could also be done
by some Turing Machine using only the binary digits.

We could show this by describing an algorithm that takes in a description of a
Turing Machine using an arbitrarily large alphabet, and produces a Turing Ma-
chine that uses only two symbols to simulate the input Turing Machine. As we
saw in Chapter 1, we can map each of the alphabet symbols to a finite sequence
of binary digits.

Mapping the rules is more complex: since each original input symbol is now
spread over several squares, we need extra states and rules to read the equiva-
lent of one original input. For example, suppose our original machine uses 16
alphabet symbols, and we map each symbol to a 4-bit sequence. If the original
machine used a symbol X, which we map to the sequence of bits 1011, we would
need four states for every state in the original machine that has a rule using X as
input. These four states would read the 1, 0, 1, 1 from the tape. The last state
now corresponds to the state in the original machine when an X is read from the
tape. To follow the rule, we also need to use four states to write the bit sequence
corresponding to the original write symbol on the tape. Then, simulating mov-
ing one square left or right on the original Turing Machine, now requires moving
four squares, so requires four more states. Hence, we may need 12 states for each
transition rule of the original machine, but can simulate everything it does using
only two symbols.



120 6.3. Modeling Computing

The Turing Machine model is a universal computing machine. This means everyuniversal
computing machine algorithm can be implemented by some Turing Machine. Chapter 12 explores

more deeply what it means to simulate every possible Turing Machine and ex-
plores the set of problems that can be solved by a Turing Machine.

Any physical machine has a limited amount of memory. If the machine does
not have enough space to store a trillion bits, there is no way it can do a com-
putation whose output would exceed a trillion bits. Nevertheless, the simplicity
and robustness of the Turing Machine model make it a useful way to think about
computing even if we cannot build a truly universal computing machine.

Turing’s model has proven to be remarkably robust. Despite being invented
before anything resembling a modern computer existed, nearly every comput-
ing machine ever imagined or built can be modeled well using Turing’s simple
model. The important thing about the model is that we can simulate any com-
puter using a Turing Machine. Any step on any computer that operates using
standard physics and be simulated with a finite number of steps on a Turing
Machine. This means if we know how many steps it takes to solve some prob-
lem on a Turing Machine, the number of steps it takes on any other machine is
at most some multiple of that number. Hence, if we can reason about the num-
ber of steps required for a Turing Machine to solve a given problem, then we can
make strong and general claims about the number of steps it would take any
standard computer to solve the problem. We will show this more convincingly
in Chapter 12, but for now we assert it, and use it to reason about the cost of
executing various procedures in the following chapter.

Example 6.1: Balancing Parentheses

We define a Turing Machine that solves the problem of checking parentheses
are well-balanced. For example, in a Scheme expression, every opening left
parenthesis must have a corresponding closing right parenthesis. For example,
(()(()))() is well-balanced, but (()))(() is not. Our goal is to design a Turing
Machine that takes as input a string of parentheses (with a # at the beginning
and end to mark the endpoints) and produces as output a 1 on the tape if the
input string is well-balanced, and a 0 otherwise. For this problem, the output is
what is written in the square under the tape head; it doesn’t matter what is left
on the rest of the tape.

Our strategy is to find matching pairs of parentheses and cross them out by writ-
ing an X on the tape in place of the parenthesis. If all the parentheses are crossed
out at the end, the input was well-balanced, so the machine writes a 1 as its out-
put and halts. If not, the input was not well-balanced, and the machine writes
a 0 as its output and halts. The trick to the matching is that a closing parenthe-
sis always matches the first open parenthesis found moving to the left from the
closing parenthesis. The plan for the machine is to move the tape head to the
right (without changing the input) until a closing parenthesis is found. Cross
out that closing parenthesis by replacing it with an X, and move to the left un-
til an open parenthesis is found. This matches the closing parenthesis, so it is
replaced with an X. Then, continue to the right searching for the next closing
parenthesis. If the end of the tape (marked with a #) is found, check the tape has
no remaining open parenthesis.

We need three internal states: LookForClosing, in which the machine contin-



Chapter 6. Machines 121

ues to the right until it finds a closing parenthesis (this is the start state); Look-
ForOpen, in which the machine continues to the left until it finds the balancing
open parenthesis; and CheckTape, in which the machine checks there are no un-
balanced open parentheses on the tape starting from the right end of the tape
and moving towards the left end. The full rules are shown in Figure 6.5.

State Read Next State Write Move
LookForClosing ) LookForOpen X ← Found closing.
LookForClosing ( LookForClosing ( → Keep looking.
LookForClosing X LookForClosing X → Keep looking.
LookForClosing # CheckTape # ← End of tape.

LookForOpen ) - X Error Shouldn’t happen.
LookForOpen ( LookForClosing X → Found open.
LookForOpen X LookForOpen X ← Keep looking.
LookForOpen # - 0 Halt Reached beginning.

CheckTape ) - 0 Error Shouldn’t happen.
CheckTape ( - 0 Halt Unbalanced open.
CheckTape X CheckTape X ← Keep checking.
CheckTape # - 1 Halt Finished checking.

Figure 6.5. Rules for checking balanced parentheses Turing Machine.

Another way to depict a Turing Machine is to show the states and rules graphi-
cally. Each state is a node in the graph. For each rule, we draw an edge on the
graph between the starting state and the next state, and label the edge with the
read and write tape symbols (separated by a /), and move direction.

Figure 6.6 shows the same Turing Machine as a state graph. When reading a
symbol in a given state produces an error (such as when a ) is encountered in
the LookForOpen state), it is not necessary to draw an edge on the graph. If there
is no outgoing edge for the current read symbol for the current state in the state
graph, execution terminates with an error.

LookFor 
Closing

LookFor 
Open

CheckTape

)/X,ß

(/(,à
X/X,à

#/#,ß

X/X,ß

(/X,à

X/X,ß

Halt#/1,Halt

#/0,Halt

(/0,Halt

Figure 6.6. Checking parentheses Turing Machine.



122 6.3. Modeling Computing

Exercise 6.10. Follow the rules to simulate the checking parentheses Turing
Machine on each input (assume the beginning and end of the input are marked
with a #):

a. )

b. ()

c. empty input

d. (()(()))()

e. (()))(()

Exercise 6.11. [?] Design a Turing Machine for adding two arbitrary-length bi-
nary numbers. The input is of the form an−1 . . . a1a0 + bm−1 . . . b1b0 (with # mark-
ers at both ends) where each ak and bk is either 0 or 1. The output tape should
contain bits that represent the sum of the two inputs.

Profile: Alan Turing

Alan Turing was born in London in 1912, and developed his computing model
while at Cambridge in the 1930s. He developed the model to solve a famous
problem posed by David Hilbert in 1928. The problem, known as the Entschei-
dungsproblem (German for “decision problem”) asked for an algorithm that could
determine the truth or falsehood of a mathematical statement. To solve the
problem, Turing first needed a formal model of an algorithm. For this, he in-
vented the Turing Machine model described above, and defined an algorithm
as any Turing Machine that is guaranteed to eventually halt on any input. With

Alan Turing
Image from Bletchley Park Ltd.

the model, Turing was able to show that there are some problems that cannot
be solved by any algorithm. We return to this in Chapter 12 and explain Turing’s
proof and examples of problems that cannot be solved.

After publishing his solution to the Entscheidungsproblem in 1936, Turing went
to Princeton and studied with Alonzo Church (inventor of the Lambda calcu-
lus, on which Scheme is based). With the start of World War II, Turing joined
the highly secret British effort to break Nazi codes at Bletchley Park. Turing
was instrumental in breaking the Enigma code which was used by the Nazi’s
to communicate with field units and submarines. Turing designed an electro-
mechanical machine known as a bombe for searching possible keys to decrypt
Enigma-encrypted messages. The machines used logical operations to search

Bombe
Rebuilt at Bletchley Park

the possible rotor settings on the Enigma to find the settings that were most
likely to have generated an intercepted encrypted message. Bletchley Park was
able to break thousands of Enigma messages during the war. The Allies used the
knowledge gained from them to avoid Nazi submarines and gain a tremendous
tactical advantage.

After the war, Turing continued to make both practical and theoretical contri-
butions to computer science. Among other things, he worked on designing
general-purpose computing machines and published a paper (Intelligent Ma-
chinery) speculating on the ability of computers to exhibit intelligence. Turing
introduced a test for machine intelligence (now known as the Turing Test) based
on a machines ability to impersonate a human and speculated that machines



Chapter 6. Machines 123

would be able to pass the test within 50 years (that is, by the year 2000). Tur-
ing also studied morphogenesis (how biological systems grow) including why
Fibonacci numbers appear so often in plants.

In 1952, Turing’s house was broken into, and Turing reported the crime to the
police. The investigation revealed that Turing was a homosexual, which at the
time was considered a crime in Britain. Turing did not attempt to hide his homo-
sexuality, and was convicted and given a choice between serving time in prison
and taking hormone treatments. He accepted the treatments, and has his se-
curity clearance revoked. In 1954, at the age of 41, Turing was found dead in
an apparent suicide, with a cynide-laced partially-eaten apple next to him. The
codebreaking effort at Bletchley Park was kept secret for many years after the
war (Turing’s report on Enigma was not declassified until 1996), so Turing never
received public recognition for his contributions to the war effort. In September
2009, instigated by an on-line petition, British Prime Minister Gordon Brown
issued an apology for how the British government treated Alan Turing.

6.4 Summary
The power of computers comes from their programmability. Universal comput-
ers can be programmed to execute any algorithm. The Turing Machine model
provides a simple, abstract, model of a computing machine. Every algorithm
can be implemented as a Turing Machine, and a Turing Machine can simulate
any other reasonable computer.

As the first computer programmer, Ada deserves the last word:

By the word operation, we mean any process which alters the mutual re-
lation of two or more things, be this relation of what kind it may. This is
the most general definition, and would include all subjects in the universe.
In abstract mathematics, of course operations alter those particular rela-
tions which are involved in the considerations of number and space, and
the results of operations are those peculiar results which correspond to the
nature of the subjects of operation. But the science of operations, as de-
rived from mathematics more especially, is a science of itself, and has its
own abstract truth and value; just as logic has its own peculiar truth and
value, independently of the subjects to which we may apply its reasonings
and processes.. . .

The operating mechanism can even be thrown into action independently
of any object to operate upon (although of course no result could then be
developed). Again, it might act upon other things besides number, were
objects found whose mutual fundamental relations could be expressed by
those of the abstract science of operations, and which should be also sus-
ceptible of adaptations to the action of the operating notation and mech-
anism of the engine. Supposing, for instance, that the fundamental rela-
tions of pitched sounds in the science of harmony and of musical composi-
tion were susceptible of such expression and adaptations, the engine might
compose elaborate and scientific pieces of music of any degree of complex-
ity or extent.

Ada, Countess of Lovelace, Sketch of The Analytical Engine, 1843


