
5
Data

From a bit to a few hundred megabytes, from a microsecond to half an hour of computing
confronts us with the completely baffling ratio of 109! By evoking the need for deep

conceptual hierarchies, the automatic computer confronts us with a radically new
intellectual challenge that has no precedent in our history.

Edsger Dijkstra

For all the programs so far, we have been limited to simple data such as numbers
and Booleans. We call this scalar data since it has no structure. As we saw in scalar

Chapter 1, we can represent all discrete data using just (enormously large) whole
numbers. For example, we could represent the text of a book using only one
(very large!) number, and manipulate the characters in the book by changing the
value of that number. But, it would be very difficult to design and understand
computations that use numbers to represent complex data.

We need more complex data structures to better model structured data. We want
to represent data in ways that allow us to think about the problem we are trying
to solve, rather than the details of how data is represented and manipulated.

This chapter covers techniques for building data structures and for defining pro-
cedures that manipulate structured data, and introduces data abstraction as a
tool for managing program complexity.

5.1 Types
All data in a program has an associated type. Internally, all data is stored just
as a sequence of bits, so the type of the data is important to understand what it
means. We have seen several different types of data already: Numbers, Booleans,
and Procedures (we use initial capital letters to signify a datatype).

A datatype defines a set (often infinite) of possible values. The Boolean datatype datatype

contains the two Boolean values, true and false. The Number type includes the
infinite set of all whole numbers (it also includes negative numbers and rational
numbers). We think of the set of possible Numbers as infinite, even though on
any particular computer there is some limit to the amount of memory available,
and hence, some largest number that can be represented. On any real com-
puter, the number of possible values of any data type is always finite. But, we
can imagine a computer large enough to represent any given number.

The type of a value determines what can be done with it. For example, a Number
can be used as one of the inputs to the primitive procedures +, ∗, and =. A
Boolean can be used as the first subexpression of an if expression and as the

76 5.1. Types

input to the not procedure (—not— can also take a Number as its input, but for
all Number value inputs the output is false), but cannot be used as the input to
+, ∗, or =.1

A Procedure can be the first subexpression in an application expression. There
are infinitely many different types of Procedures, since the type of a Procedure
depends on its input and output types. For example, recall bigger procedure
from Chapter 3:

(define (bigger a b) (if (> a b) a b))

It takes two Numbers as input and produces a Number as output. We denote
this type as:

Number× Number→ Number

The inputs to the procedure are shown on the left side of the arrow. The type of
each input is shown in order, separated by the × symbol.2 The output type is
given on the right side of the arrow.

From its definition, it is clear that the bigger procedure takes two inputs from its
parameter list. How do we know the inputs must be Numbers and the output is
a Number?

The body of the bigger procedure is an if expression with the predicate expres-
sion (> a b). This applies the > primitive procedure to the two inputs. The
type of the > procedure is Number × Number → Boolean. So, for the predi-
cate expression to be valid, its inputs must both be Numbers. This means the
input values to bigger must both be Numbers. We know the output of the bigger
procedure will be a Number by analyzing the consequent and alternate subex-
pressions: each evaluates to one of the input values, which must be a Number.

Starting with the primitive Boolean, Number, and Procedure types, we can build
arbitrarily complex datatypes. This chapter introduces mechanisms for building
complex datatypes by combining the primitive datatypes.

Exercise 5.1. Describe the type of each of these expressions.

a. 17

b. (lambda (a) (> a 0))

c. ((lambda (a) (> a 0)) 3)

d. (lambda (a) (lambda (b) (> a b)))

e. (lambda (a) a)

1The primitive procedure equal? is a more general comparison procedure that can take as in-
puts any two values, so could be used to compare Boolean values. For example, (equal? false false)
evaluates to true and (equal? true 3) is a valid expression that evaluates to false.

2The notation using × to separate input types makes sense if you think about the number of
different inputs to a procedure. For example, consider a procedure that takes two Boolean values as
inputs, so its type is Boolean × Boolean→ Value. Each Boolean input can be one of two possible
values. If we combined both inputs into one input, there would be 2× 2 different values needed to
represent all possible inputs.

Chapter 5. Data 77

Exercise 5.2. Define or identify a procedure that has the given type.

a. Number× Number→ Boolean

b. Number→ Number

c. (Number→ Number)× (Number→ Number)
→ (Number→ Number)

d. Number→ (Number→ (Number→ Number))

5.2 Pairs
The simplest structured data construct is a Pair . A Pair packages two values Pair

together. We draw a Pair as two boxes, each containing a value. We call each box
of a Pair a cell. Here is a Pair where the first cell has the value 37 and the second
cell has the value 42:

Scheme provides built-in procedures for constructing a Pair, and for extracting
each cell from a Pair:

cons: Value× Value→ Pair
Evaluates to a Pair whose first cell is the first input and second cell is the
second input. The inputs can be of any type.

car : Pair→ Value
Evaluates to the first cell of the input, which must be a Pair.

cdr : Pair→ Value
Evaluates to the second cell of input, which must be a Pair.

These rather unfortunate names come from the original LISP implementation
on the IBM 704. The name cons is short for “construct”. The name car is short for
“Contents of the Address part of the Register” and the name cdr (pronounced
“could-er”) is short for “Contents of the Decrement part of the Register”. The de-
signers of the original LISP implementation picked the names because of how
pairs could be implemented on the IBM 704 using a single register to store both
parts of a pair, but it is a mistake to name things after details of their implemen-
tation (see Section 5.6). Unfortunately, the names stuck and continue to be used
in many LISP-derived languages, including Scheme.

We can construct the Pair shown in the previous diagram by evaluating (cons 37
42). DrRacket will display a Pair by printing the value of each cell separated by a
dot: (37 . 42). The interactions below show example uses of cons, car , and cdr .

> (define mypair (cons 37 42))
> (car mypair)
37
> (cdr mypair)
42

The values in the cells of a Pair can be any type, including other Pairs. This defi-
nition defines a Pair where each cell of the Pair is itself a Pair:

78 5.2. Pairs

(define doublepair (cons (cons 1 2) (cons 3 4)))

We can use the car and cdr procedures to access components of the doublepair
structure: (car doublepair) evaluates to the Pair (1 . 2), and (cdr doublepair)
evaluates to the Pair (3 . 4).

We can compose multiple car and cdr applications to extract components from
nested pairs:
> (cdr (car doublepair))
2
> (car (cdr doublepair))
3
> ((fcompose cdr cdr) doublepair) fcompose from Section 4.2.1

4
> (car (car (car doublepair)))

car: expects argument of type <pair>; given 1

The last expression produces an error when it is evaluated since car is applied
to the scalar value 1. The car and cdr procedures can only be applied to an
input that is a Pair. Hence, an error results when we attempt to apply car to
a scalar value. This is an important property of data: the type of data (e.g., a
Pair) defines how it can be used (e.g., passed as the input to car and cdr). Every
procedure expects a certain type of inputs, and typically produces an error when
it is applied to values of the wrong type.

We can draw the value of doublepair by nesting Pairs within cells:

Drawing Pairs within Pairs within Pairs can get quite difficult, however. For in-
stance, try drawing (cons 1 (cons 2 (cons 3 (cons 4 5)))) this way.

Instead, we us arrows to point to the contents of cells that are not simple values.
This is the structure of doublepair shown using arrows:

Using arrows to point to cell contents allows us to draw arbitrarily complicated
data structures such as (cons 1 (cons 2 (cons 3 (cons 4 5)))), keeping the cells
reasonable sizes:

Chapter 5. Data 79

Exercise 5.3. Suppose the following definition has been executed:

(define tpair
(cons (cons (cons 1 2) (cons 3 4))

5))

Draw the structure defined by tpair , and give the value of each of the following
expressions.

a. (cdr tpair)

b. (car (car (car tpair)))

c. (cdr (cdr (car tpair)))

d. (car (cdr (cdr tpair)))

Exercise 5.4. Write expressions that extract each of the four elements from
fstruct defined by (define fstruct (cons 1 (cons 2 (cons 3 4)))).

Exercise 5.5. What expression produces the structure shown below:

5.2.1 Making Pairs
Although Scheme provides the built-in procedures cons, car , and cdr for creat-
ing Pairs and accessing their cells, there is nothing magical about these proce-
dures. We can define procedures with the same behavior ourselves using the
subset of Scheme introduced in Chapter 3.

Here is one way to define the pair procedures (we prepend an s to the names to
avoid confusion with the built-in procedures):

(define (scons a b) (lambda (w) (if w a b)))
(define (scar pair) (pair true))
(define (scdr pair) (pair false))

The scons procedure takes the two parts of the Pair as inputs, and produces as
output a procedure. The output procedure takes one input, a selector that de-
termines which of the two cells of the Pair to output. If the selector is true, the
value of the if expression is the value of the first cell; if the selector is false, it is
the value of the second cell. The scar and scdr procedures apply a procedure
constructed by scons to either true (to select the first cell in scar) or false (to
select the second cell in scdr).

80 5.2. Pairs

Exercise 5.6. Convince yourself the definitions of scons, scar , and scdr above
work as expected by following the evaluation rules to evaluate

(scar (scons 1 2))

Exercise 5.7. Show the corresponding definitions of tcar and tcdr that provide
the pair selection behavior for a pair created using tcons defined as:

(define (tcons a b) (lambda (w) (if w b a)))

5.2.2 Triples to Octuples
Pairs are useful for representing data that is composed of two parts such as a
calendar date (composed of a number and month), or a playing card (composed
of a rank and suit). But, what if we want to represent data composed of more
than two parts such as a date (composed of a number, month, and year) or a
poker hand consisting of five playing cards? For more complex data structures,
we need data structures that have more than two components.

A triple has three components. Here is one way to define a triple datatype:

(define (make-triple a b c)
(lambda (w) (if (= w 0) a (if (= w 1) b c))))

(define (triple-first t) (t 0))
(define (triple-second t) (t 1))
(define (triple-third t) (t 2))

Since a triple has three components we need three different selector values.

Another way to make a triple would be to combine two Pairs. We do this by
making a Pair whose second cell is itself a Pair:

(define (make-triple a b c) (cons a (cons b c)))
(define (triple-first t) (car t))
(define (triple-second t) (car (cdr t)))
(define (triple-third t) (cdr (cdr t)))

Similarly, we can define a quadruple as a Pair whose second cell is a triple:

(define (make-quad a b c d) (cons a (make-triple b c d)))
(define (quad-first q) (car q))
(define (quad-second q) (triple-first (cdr q))
(define (quad-third q) (triple-second (cdr q))
(define (quad-fourth q) (triple-third (cdr q))

We could continue in this manner defining increasingly large tuples.

A triple is a Pair whose second cell is a Pair.

A quadruple is a Pair whose second cell is a triple.

A quintuple is a Pair whose second cell is a quadruple.

A sextuple is a Pair whose second cell is a quintuple.

A septuple is a Pair whose second cell is a sextuple.

· · ·
An n + 1-uple is a Pair whose second cell is an n-uple.

Chapter 5. Data 81

Building from the simple Pair, we can construct tuples containing any number
of components.

Exercise 5.8. Define a procedure that constructs a quintuple and procedures
for selecting the five elements of a quintuple.

Exercise 5.9. Another way of thinking of a triple is as a Pair where the first cell is
a Pair and the second cell is a scalar. Provide definitions of make-triple, triple-
first , triple-second, and triple-third for this construct.

5.3 Lists
In the previous section, we saw how to construct arbitrarily large tuples from
Pairs. This way of managing data is not very satisfying since it requires defining
different procedures for constructing and accessing elements of every length tu-
ple. For many applications, we want to be able to manage data of any length
such as all the items in a web store, or all the bids on a given item. Since the
number of components in these objects can change, it would be very painful to
need to define a new tuple type every time an item is added. We need a data
type that can hold any number of items.

This definition almost provides what we need:

An any-uple is a Pair whose second cell is an any-uple.

This seems to allow an any-uple to contain any number of elements. The prob-
lem is we have no stopping point. With only the definition above, there is no
way to construct an any-uple without already having one.

The situation is similar to defining MoreDigits as zero or more digits in Chap-
ter 2, defining MoreExpressions in the Scheme grammar in Chapter 3 as zero or
more Expressions, and recursive composition in Chapter 4.

Recall the grammar rules for MoreExpressions:

MoreExpressions ::⇒ Expression MoreExpressions
MoreExpressions ::⇒ ε

The rule for constructing an any-uple is analogous to the first MoreExpression
replacement rule. To allow an any-uple to be constructed, we also need a con-
struction rule similar to the second rule, where MoreExpression can be replaced
with nothing. Since it is hard to type and read nothing in a program, Scheme
has a name for this value: null. null

DrRacket will print out the value of null as (). It is also known as the empty list,
since it represents the List containing no elements. The built-in procedure null?
takes one input parameter and evaluates to true if and only if the value of that
parameter is null.

Using null, we can now define a List : List

A List is either (1) null or (2) a Pair whose second cell is a List.

Symbolically, we define a List as:

82 5.3. Lists

List ::⇒ null
List ::⇒ (cons Value List)

These two rules define a List as a data structure that can contain any number of
elements. Starting from null, we can create Lists of any length:

• null evaluates to a List containing no elements.
• (cons 1 null) evaluates to a List containing one element.
• (cons 1 (cons 2 null)) evaluates to a 2-element List containing two ele-

ments.
• (cons 1 (cons 2 (cons 3 null))) evaluates to a 3-element List.
• . . .

Scheme provides a convenient procedure, list , for constructing a List. The list
procedure takes zero or more inputs, and evaluates to a List containing those
inputs in order. The following expressions are equivalent to the corresponding
expressions above: (list), (list 1), (list 1 2), and (list 1 2 3).

Lists are just a collection of Pairs, so we can draw a List using the same box and
arrow notation we used to draw structures created with Pairs. Here is the struc-
ture resulting from (list 1 2 3):

There are three Pairs in the List, the second cell of each Pair is a List. For the
third Pair, the second cell is the List null, which we draw as a slash through the
final cell in the diagram.

Table 5.1 summarizes some of the built-in procedures for manipulating Pairs
and Lists.

Type Output

cons Value× Value→ Pair a Pair consisting of the two inputs

car Pair→ Value the first cell of the input Pair

cdr Pair→ Value the second cell of the input Pair

list zero or more Values→ List a List containing the inputs

null? Value→ Boolean true if the input is null, otherwise false

pair? Value→ Boolean true if the input is a Pair, otherwise false

list? Value→ Boolean true if the input is a List, otherwise false

Table 5.1. Selected Built-In Scheme Procedures for Lists and Pairs.

Chapter 5. Data 83

Exercise 5.10. For each of the following expressions, explain whether or not the
expression evaluates to a List. Check your answers with a Scheme interpreter by
using the list? procedure.

a. null

b. (cons 1 2)

c. (cons null null)

d. (cons (cons (cons 1 2) 3) null)

e. (cdr (cons 1 (cons 2 (cons null null))))

f. (cons (list 1 2 3) 4)

5.4 List Procedures
Since the List data structure is defined recursively, it is natural to define recur-
sive procedures to examine and manipulate lists. Whereas most recursive pro-
cedures on inputs that are Numbers usually used 0 as the base case, for lists the
most common base case is null. With numbers, we make progress by subtract-
ing 1; with lists, we make progress by using cdr to reduce the length of the input
List by one element for each recursive application. This means we often break
problems involving Lists into figuring out what to do with the first element of
the List and the result of applying the recursive procedure to the rest of the List.

We can specialize our general problem solving strategy from Chapter 3 for pro-
cedures involving lists:

1. Be very optimistic! Since lists themselves are recursive data structures,
most problems involving lists can be solved with recursive procedures.

2. Think of the simplest version of the problem, something you can already
solve. This is the base case. For lists, this is usually the empty list.

3. Consider how you would solve a big version of the problem by using the
result for a slightly smaller version of the problem. This is the recursive
case. For lists, the smaller version of the problem is usually the rest (cdr)
of the List.

4. Combine the base case and the recursive case to solve the problem.

Next we consider procedures that examine lists by walking through their ele-
ments and producing a scalar value. Section 5.4.2 generalizes these procedures.
In Section 5.4.3, we explore procedures that output lists.

5.4.1 Procedures that Examine Lists
All of the example procedures in this section take a single List as input and pro-
duce a scalar value that depends on the elements of the List as output. These
procedures have base cases where the List is empty, and recursive cases that ap-
ply the recursive procedure to the cdr of the input List.

84 5.4. List Procedures

Example 5.1: Length

How many elements are in a given List?3 Our standard recursive problem solv-
ing technique is to “Think of the simplest version of the problem, something
you can already solve.” For this procedure, the simplest version of the problem
is when the input is the empty list, null. We know the length of the empty list is
0. So, the base case test is (null? p) and the output for the base case is 0.

For the recursive case, we need to consider the structure of all lists other than
null. Recall from our definition that a List is either null or (cons Value List). The
base case handles the null list; the recursive case must handle a List that is a Pair
of an element and a List. The length of this List is one more than the length of
the List that is the cdr of the Pair.

(define (list-length p)
(if (null? p)

0
(+ 1 (list-length (cdr p)))))

Here are a few example applications of our list-length procedure:

> (list-length null)
0
> (list-length (cons 0 null))
1
> (list-length (list 1 2 3 4))
4

Example 5.2: List Sums and Products

First, we define a procedure that takes a List of numbers as input and produces
as output the sum of the numbers in the input List. As usual, the base case is
when the input is null: the sum of an empty list is 0. For the recursive case, we
need to add the value of the first number in the List, to the sum of the rest of the
numbers in the List.

(define (list-sum p)
(if (null? p)

0
(+ (car p) (list-sum (cdr p)))))

We can define list-product similarly, using ∗ in place of +. The base case re-
sult cannot be 0, though, since then the final result would always be 0 since any
number multiplied by 0 is 0. We follow the mathematical convention that the
product of the empty list is 1.

(define (list-product p)
(if (null? p)

1
(∗ (car p) (list-product (cdr p)))))

3Scheme provides a built-in procedure length that takes a List as its input and outputs the num-
ber of elements in the List. Here, we will define our own list-length procedure that does this (without
using the built-in length procedure). As with many other examples and exercises in this chapter, it
is instructive to define our own versions of some of the built-in list procedures.

Chapter 5. Data 85

Exercise 5.11. Define a procedure is-list? that takes one input and outputs true if
the input is a List, and false otherwise. Your procedure should behave identically
to the built-in list? procedure, but you should not use list? in your definition.

Exercise 5.12. Define a procedure list-max that takes a List of non-negative
numbers as its input and produces as its result the value of the greatest element
in the List (or 0 if there are no elements in the input List). For example, (list-max
(list 1 1 2 0)) should evaluate to 2.

5.4.2 Generic Accumulators
The list-length, list-sum, and list-product procedures all have very similar struc-
tures. The base case is when the input is the empty list, and the recursive case
involves doing something with the first element of the List and recursively call-
ing the procedure with the rest of the List:

(define (Recursive-Procedure p)
(if (null? p)

Base-Case-Result
(Accumulator-Function (car p) (Recursive-Procedure (cdr p)))))

We can define a generic accumulator procedure for lists by making the base case
result and accumulator function inputs:

(define (list-accumulate f base p)
(if (null? p)

base
(f (car p) (list-accumulate f base (cdr p)))))

We can use list-accumulate to define list-sum and list-product :

(define (list-sum p) (list-accumulate + 0 p))
(define (list-product p) (list-accumulate ∗ 1 p))

Defining the list-length procedure is a bit less natural. The recursive case in the
original list-length procedure is (+ 1 (list-length (cdr p))); it does not use the
value of the first element of the List. But, list-accumulate is defined to take a
procedure that takes two inputs—the first input is the first element of the List;
the second input is the result of applying list-accumulate to the rest of the List.
We should follow our usual strategy: be optimistic! Being optimistic as in recur-
sive definitions, the value of the second input should be the length of the rest of
the List. Hence, we need to pass in a procedure that takes two inputs, ignores
the first input, and outputs one more than the value of the second input:

(define (list-length p)
(list-accumulate (lambda (el length-rest) (+ 1 length-rest)) 0 p))

Exercise 5.13. Use list-accumulate to define list-max (from Exercise 5.12).

Exercise 5.14. [?] Use list-accumulate to define is-list? (from Exercise 5.11).

86 5.4. List Procedures

Example 5.3: Accessing List Elements

The built-in car procedure provides a way to get the first element of a list, but
what if we want to get the third element? We can do this by taking the cdr twice
to eliminate the first two elements, and then using car to get the third:

(car (cdr (cdr p)))

We want a more general procedure that can access any selected list element. It
takes two inputs: a List, and an index Number that identifies the element. If we
start counting from 1 (it is often more natural to start from 0), then the base case
is when the index is 1 and the output should be the first element of the List:

(if (= n 1) (car p) . . .)

For the recursive case, we make progress by eliminating the first element of the
list. We also need to adjust the index: since we have removed the first element
of the list, the index should be reduced by one. For example, instead of wanting
the third element of the original list, we now want the second element of the cdr
of the original list.

(define (list-get-element p n)
(if (= n 1)

(car p)
(list-get-element (cdr p) (− n 1))))

What happens if we apply list-get-element to an index that is larger than the size
of the input List (for example, (list-get-element (list 1 2) 3))?

The first recursive call is (list-get-element (list 2) 2). The second recursive call is
(list-get-element (list) 1). At this point, n is 1, so the base case is reached and (car
p) is evaluated. But, p is the empty list (which is not a Pair), so an error results.

A better version of list-get-element would provide a meaningful error message
when the requested element is out of range. We do this by adding an if expres-
sion that tests if the input List is null:

(define (list-get-element p n)
(if (null? p)

(error "Index out of range")
(if (= n 1)

(car p)
(list-get-element (cdr p) (− n 1)))))

The built-in procedure error takes a String as input. The String datatype is a
sequence of characters; we can create a String by surrounding characters with
double quotes, as in the example. The error procedure terminates program ex-
ecution with a message that displays the input value.

Checking explicitly for invalid inputs is known as defensive programming . Pro-defensive
programming gramming defensively helps avoid tricky to debug errors and makes it easier to

understand what went wrong if there is an error.

Chapter 5. Data 87

Exercise 5.15. Define a procedure list-last-element that takes as input a List
and outputs the last element of the input List. If the input List is empty, list-last-
element should produce an error.

Exercise 5.16. Define a procedure list-ordered? that takes two inputs, a test
procedure and a List. It outputs true if all the elements of the List are ordered
according to the test procedure. For example, (list-ordered? < (list 1 2 3)) evalu-
ates to true, and (list-ordered? < (list 1 2 3 2)) evaluates to false. Hint: think about
what the output should be for the empty list.

5.4.3 Procedures that Construct Lists
The procedures in this section take values (including Lists) as input, and pro-
duce a new List as output. As before, the empty list is typically the base case.
Since we are producing a List as output, the result for the base case is also usu-
ally null. The recursive case will use cons to construct a List combining the first
element with the result of the recursive application on the rest of the List.

Example 5.4: Mapping

One common task for manipulating a List is to produce a new List that is the re-
sult of applying some procedure to every element in the input List.

For the base case, applying any procedure to every element of the empty list
produces the empty list. For the recursive case, we use cons to construct a List.
The first element is the result of applying the mapping procedure to the first
element of the input List. The rest of the output List is the result of recursively
mapping the rest of the input List.

Here is a procedure that constructs a List that contains the square of every ele-
ment of the input List:

(define (list-square p)
(if (null? p)

null
(cons (square (car p))

(list-square (cdr p)))))

We generalize this by making the procedure which is applied to each element an
input. The procedure list-map takes a procedure as its first input and a List as
its second input. It outputs a List whose elements are the results of applying the
input procedure to each element of the input List.4

(define (list-map f p)
(if (null? p)

null
(cons (f (car p))

(list-map f (cdr p)))))

We can use list-map to define square-all:

(define (square-all p) (list-map square p))

4Scheme provides a built-in map procedure. It behaves like this one when passed a procedure
and a single List as inputs, but can also work on more than one List input at a time.

88 5.4. List Procedures

Exercise 5.17. Define a procedure list-increment that takes as input a List of
numbers, and produces as output a List containing each element in the input
List incremented by one. For example, (list-increment 1 2 3) evaluates to (2 3 4).

Exercise 5.18. Use list-map and list-sum to define list-length:

(define (list-length p) (list-sum (list-map p)))

Example 5.5: Filtering

Consider defining a procedure that takes as input a List of numbers, and eval-
uates to a List of all the non-negative numbers in the input. For example, (list-
filter-negative (list 1 −3 −4 5 −2 0)) evaluates to (1 5 0).

First, consider the base case when the input is the empty list. If we filter the
negative numbers from the empty list, the result is an empty list. So, for the base
case, the result should be null.

In the recursive case, we need to determine whether or not the first element
should be included in the output. If it should be included, we construct a new
List consisting of the first element followed by the result of filtering the remain-
ing elements in the List. If it should not be included, we skip the first element
and the result is the result of filtering the remaining elements in the List.

(define (list-filter-negative p)
(if (null? p)

null
(if (>= (car p) 0)

(cons (car p) (list-filter-negative (cdr p)))
(list-filter-negative (cdr p)))))

Similarly to list-map, we can generalize our filter by making the test procedure
as an input, so we can use any predicate to determine which elements to include
in the output List.5

(define (list-filter test p)
(if (null? p)

null
(if (test (car p))

(cons (car p) (list-filter test (cdr p)))
(list-filter test (cdr p)))))

Using the list-filter procedure, we can define list-filter-negative as:

(define (list-filter-negative p) (list-filter (lambda (x) (>= x 0)) p))

We could also define the list-filter procedure using the list-accumulate proce-
dure from Section 5.4.1:

5Scheme provides a built-in function filter that behaves like our list-filter procedure.

Chapter 5. Data 89

(define (list-filter test p)
(list-accumulate

(lambda (el rest) (if (test el) (cons el rest) rest))
null
p))

Exercise 5.19. Define a procedure list-filter-even that takes as input a List of
numbers and produces as output a List consisting of all the even elements of
the input List.

Exercise 5.20. Define a procedure list-remove that takes two inputs: a test pro-
cedure and a List. As output, it produces a List that is a copy of the input List
with all of the elements for which the test procedure evaluates to true removed.
For example, (list-remove (lambda (x) (= x 0)) (list 0 1 2 3)) should evaluates to
the List (1 2 3).

Exercise 5.21. [??] Define a procedure list-unique-elements that takes as input
a List and produces as output a List containing the unique elements of the input
List. The output List should contain the elements in the same order as the input
List, but should only contain the first appearance of each value in the input List.

Example 5.6: Append

The list-append procedure takes as input two lists and produces as output a List
consisting of the elements of the first List followed by the elements of the sec-
ond List.6 For the base case, when the first List is empty, the result of appending
the lists should just be the second List. When the first List is non-empty, we can
produce the result by cons-ing the first element of the first List with the result of
appending the rest of the first List and the second List.

(define (list-append p q)
(if (null? p) q

(cons (car p) (list-append (cdr p) q))))

Example 5.7: Reverse

The list-reverse procedure takes a List as input and produces as output a List
containing the elements of the input List in reverse order.7 For example, (list-
reverse (list 1 2 3)) evaluates to the List (3 2 1). As usual, we consider the base
case where the input List is null first. The reverse of the empty list is the empty
list. To reverse a non-empty List, we should put the first element of the List at
the end of the result of reversing the rest of the List.

The tricky part is putting the first element at the end, since cons only puts ele-
ments at the beginning of a List. We can use the list-append procedure defined
in the previous example to put a List at the end of another List. To make this
work, we need to turn the element at the front of the List into a List containing
just that element. We do this using (list (car p)).

6There is a built-in procedure append that does this. The built-in append takes any number of
Lists as inputs, and appends them all into one List.

7The built-in procedure reverse does this.

90 5.4. List Procedures

(define (list-reverse p)
(if (null? p) null

(list-append (list-reverse (cdr p)) (list (car p)))))

Exercise 5.22. Define the list-reverse procedure using list-accumulate.

Example 5.8: Intsto

For our final example, we define the intsto procedure that constructs a List con-
taining the whole numbers between 1 and the input parameter value. For exam-
ple, (intsto 5) evaluates to the List (1 2 3 4 5).

This example combines ideas from the previous chapter on creating recursive
definitions for problems involving numbers, and from this chapter on lists. Since
the input parameter is not a List, the base case is not the usual list base case
when the input is null. Instead, we use the input value 0 as the base case. The
result for input 0 is the empty list. For higher values, the output is the result of
putting the input value at the end of the List of numbers up to the input value
minus one.

A first attempt that doesn’t quite work is:

(define (revintsto n)
(if (= n 0) null

(cons n (revintsto (− n 1)))))

The problem with this solution is that it is cons-ing the higher number to the
front of the result, instead of at the end. Hence, it produces the List of numbers
in descending order: (revintsto 5) evaluates to (5 4 3 2 1).

One solution is to reverse the result by composing list-reverse with revintsto:

(define (intsto n) (list-reverse (revintsto n)))

Equivalently, we can use the fcompose procedure from Section 4.2:

(define intsto (fcompose list-reverse revintsto))

Alternatively, we could use list-append to put the high number directly at the
end of the List. Since the second operand to list-append must be a List, we use
(list n) to make a singleton List containing the value as we did for list-reverse.

(define (intsto n)
(if (= n 0) null

(list-append (intsto (− n 1)) (list n))))

Although all of these procedures are functionally equivalent (for all valid inputs,
each function produces exactly the same output), the amount of computing
work (and hence the time they take to execute) varies across the implemen-
tations. We consider the problem of estimating the running-times of different
procedures in Part II.

Exercise 5.23. Define factorial using intsto.

Chapter 5. Data 91

5.5 Lists of Lists
The elements of a List can be any datatype, including, of course, other Lists. In
defining procedures that operate on Lists of Lists, we often use more than one
recursive call when we need to go inside the inner Lists.

Example 5.9: Summing Nested Lists

Consider the problem of summing all the numbers in a List of Lists. For exam-
ple, (nested-list-sum (list (list 1 2 3) (list 4 5 6))) should evaluate to 21. We can
define nested-list-sum using list-sum on each List.

(define (nested-list-sum p)
(if (null? p)

0
(+ (list-sum (car p))

(nested-list-sum (cdr p)))))

This works when we know the input is a List of Lists. But, what if the input can
contain arbitrarily deeply nested Lists?

To handle this, we need to recursively sum the inner Lists. Each element in our
deep List is either a List or a Number. If it is a List, we should add the value of
the sum of all elements in the List to the result for the rest of the List. If it is a
Number, we should just add the value of the Number to the result for the rest of
the List. So, our procedure involves two recursive calls: one for the first element
in the List when it is a List, and the other for the rest of the List.

(define (deep-list-sum p)
(if (null? p)

0
(+ (if (list? (car p))

(deep-list-sum (car p))
(car p))

(deep-list-sum (cdr p)))))

Example 5.10: Flattening Lists

Another way to compute the deep list sum would be to first flatten the List, and
then use the list-sum procedure.

Flattening a nested list takes a List of Lists and evaluates to a List containing the
elements of the inner Lists. We can define list-flatten by using list-append to
append all the inner Lists together.

(define (list-flatten p)
(if (null? p) null

(list-append (car p) (list-flatten (cdr p)))))

This flattens a List of Lists into a single List. To completely flatten a deeply
nested List, we use multiple recursive calls as we did with deep-list-sum:

92 5.5. Lists of Lists

(define (deep-list-flatten p)
(if (null? p) null

(list-append (if (list? (car p))
(deep-list-flatten (car p))
(list (car p)))

(deep-list-flatten (cdr p)))))

Now we can define deep-list-sum as:

(define deep-list-sum (fcompose deep-list-flatten list-sum))

Exercise 5.24. [?] Define a procedure deep-list-map that behaves similarly to
list-map but on deeply nested lists. It should take two parameters, a mapping
procedure, and a List (that may contain deeply nested Lists as elements), and
output a List with the same structure as the input List with each value mapped
using the mapping procedure.

Exercise 5.25. [?] Define a procedure deep-list-filter that behaves similarly to
list-filter but on deeply nested lists.

Exploration 5.1: Pascal’s Triangle

This triangle is known as Pascal’s Triangle (named for Blaise Pascal, although
known to many others before him):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

· · ·

Each number in the triangle is the sum of the two numbers immediately above
and to the left and right of it. The numbers in Pascal’s Triangle are the coeffi-
cients in a binomial expansion. The numbers of the nth row (where the rows
are numbered starting from 0) are the coefficients of the binomial expansion of
(x + y)n. For example, (x + y)2 = x2 + 2xy + y2, so the coefficients are 1 2 1,
matching the third row in the triangle; from the fifth row, (x + y)4 = x4 + 4x3y +
6x2y2 + 4xy3 + y4. The values in the triangle also match the number of ways to
choose k elements from a set of size n (see Exercise 4.5) — the kth number on the
nth row of the triangle gives the number of ways to choose k elements from a set
of size n. For example, the third number on the fifth (n = 4) row is 6, so there are
6 ways to choose 3 items from a set of size 4.

The goal of this exploration is to define a procedure, pascals-triangle to produce
Pascal’s Triangle. The input to your procedure should be the number of rows; the
output should be a list, where each element of the list is a list of the numbers on
that row of Pascal’s Triangle. For example, (pascals-triangle 0) should produce

Chapter 5. Data 93

((1)) (a list containing one element which is a list containing the number 1), and
(pascals-triangle 4) should produce ((1) (1 1) (1 2 1) (1 3 3 1) (1 4 6 4 1)).

Ambitious readers should attempt to define pascals-triangle themselves; the
sub-parts below provide some hints for one way to define it.

a. First, define a procedure expand-row that expands one row in the triangle. It
takes a List of numbers as input, and as output produces a List with one more
element than the input list. The first number in the output List should be the
first number in the input List; the last number in the output List should be
the last number in the input List. Every other number in the output List is the
sum of two numbers in the input List. The nth number in the output List is the
sum of the n− 1th and nth numbers in the input List. For example, (expand-
row (list 1)) evaluates to (1 1); (expand-row (list 1 1)) evaluates to (1 2 1); and
(expand-row (list 1 4 6 4 1)) evaluates to (1 5 10 10 5 1). This is trickier than
the recursive list procedures we have seen so far since the base case is not
the empty list. It also needs to deal with the first element specially. To define
expand-row, it will be helpful to divide it into two procedures, one that deals
with the first element of the list, and one that produces the rest of the list:

(define (expand-row p) (cons (car p) (expand-row-rest p)))

b. Define a procedure pascals-triangle-row that takes one input, n, and outputs
the nth row of Pascal’s Triangle. For example, (pascals-triangle-row 0) evalu-
ates to (1) and (pascals-triangle-row 3) produces (1 3 3 1).

c. Finally, define pascals-triangle with the behavior described above.

5.6 Data Abstraction
The mechanisms we have for constructing and manipulating complex data struc-
tures are valuable because they enable us to think about programs closer to the
level of the problem we are solving than the low level of how data is stored and
manipulated in the computer. Our goal is to hide unnecessary details about how
data is represented so we can focus on the important aspects of what the data
means and what we need to do with it to solve our problem. The technique of
hiding how data is represented from how it is used is known as data abstraction. data abstraction

The datatypes we have seen so far are not very abstract. We have datatypes for
representing Pairs, triples, and Lists, but we want datatypes for representing ob-
jects closer to the level of the problem we want to solve. A good data abstraction
is abstract enough to be used without worrying about details like which cell of
the Pair contains which datum and how to access the different elements of a List.
Instead, we want to define procedures with meaningful names that manipulate
the relevant parts of our data.

The rest of this section is an extended example that illustrates how to solve prob-
lems by first identifying the objects we need to model the problem, and then im-
plementing data abstractions that represent those objects. Once the appropri-
ate data abstractions are designed and implemented, the solution to the prob-
lem often follows readily. This example also uses many of the list procedures
defined earlier in this chapter.

94 5.6. Data Abstraction

Exploration 5.2: Pegboard Puzzle

For this exploration, we develop a program to solve the infamous pegboard puz-
zle, often found tormenting unsuspecting diners at pancake restaurants. The
standard puzzle is a one-player game played on a triangular board with fifteen
holes with pegs in all of the holes except one.

The goal is to remove all but one of the pegs by jumping pegs over one another.
A peg may jump over an adjacent peg only when there is a free hole on the other
side of the peg. The jumped peg is removed. The game ends when there are no
possible moves. If there is only one peg remaining, the player wins (according
to the Cracker Barrel version of the game, “Leave only one—you’re genius”). If
more than one peg remains, the player loses (“Leave four or more’n you’re just
plain ‘eg-no-ra-moose’.”).

Figure 5.1. Pegboard Puzzle.
The blue peg can jump the red peg as shown, removing the red peg. The resulting posi-
tion is a winning position.

Our goal is to develop a program that finds a winning solution to the pegboard
game from any winnable starting position. We use a brute force approach: trybrute force

all possible moves until we find one that works. Brute force solutions only work
on small-size problems. Because they have to try all possibilities they are of-
ten too slow for solving large problems, even on the most powerful computers
imaginable.8

The first thing to think about to solve a complex problem is what datatypes we
need. We want datatypes that represent the things we need to model in our
problem solution. For the pegboard game, we need to model the board with its
pegs. We also need to model actions in the game like a move (jumping over a
peg). The important thing about a datatype is what you can do with it. To design
our board datatype we need to think about what we want to do with a board. In
the physical pegboard game, the board holds the pegs. The important property
we need to observe about the board is which holes on the board contain pegs.
For this, we need a way of identifying board positions. We define a datatype
for representing positions first, then a datatype for representing moves, and a
datatype for representing the board. Finally, we use these datatypes to define a
procedure that finds a winning solution.

8The generalized pegboard puzzle is an example of a class of problems known as NP-Complete.
This means it is not known whether or not any solution exists that is substantially better than the
brute force solution, but it would be extraordinarily surprising (and of momentous significance!) to
find one.

Chapter 5. Data 95

Position. We identify the board positions using row and column numbers:

(1 1)
(2 1) (2 2)

(3 1) (3 2) (3 3)
(4 1) (4 2) (4 3) (4 4)

(5 1) (5 2) (5 3) (5 4) (5 5)

A position has a row and a column, so we could just use a Pair to represent a
position. This would work, but we prefer to have a more abstract datatype so we
can think about a position’s row and column, rather than thinking that a position
is a Pair and using the car and cdr procedures to extract the row and column
from the position.

Our Position datatype should provide at least these operations:

make-position: Number× Number→ Position
Creates a Position representing the row and column given by the input
numbers.

position-get-row: Position→ Number
Outputs the row number of the input Position.

position-get-column: Position→ Number
Outputs the column number of the input Position.

Since the Position needs to keep track of two numbers, a natural way to imple-
ment the Position datatype is to use a Pair. A more defensive implementation
of the Position datatype uses a tagged list . With a tagged list, the first element tagged list

of the list is a tag denoting the datatype it represents. All operations check the
tag is correct before proceeding. We can use any type to encode the list tag, but
it is most convenient to use the built-in Symbol type. Symbols are a quote (’)
followed by a sequence of characters. The important operation we can do with
a Symbol, is test whether it is an exact match for another symbol using the eq?
procedure.

We define the tagged list datatype, tlist , using the list-get-element procedure
from Example 5.3:

(define (make-tlist tag p) (cons tag p))
(define (tlist-get-tag p) (car p))

(define (tlist-get-element tag p n)
(if (eq? (tlist-get-tag p) tag)

(list-get-element (cdr p) n)
(error (format "Bad tag: ˜a (expected ˜a)"

(tlist-get-tag p) tag))))

The format procedure is a built-in procedure similar to the printf procedure
described in Section 4.5.1. Instead of printing as a side effect, format produces
a String. For example, (format "list: ˜a number: ˜a." (list 1 2 3) 123) evaluates to the
String "list: (1 2 3) number: 123.".

This is an example of defensive programming. Using our tagged lists, if we ac-
cidentally attempt to use a value that is not a Position as a position, we will get
a clear error message instead of a hard-to-debug error (or worse, an unnoticed

96 5.6. Data Abstraction

incorrect result).

Using the tagged list, we define the Position datatype as:

(define (make-position row col) (make-tlist ’Position (list row col)))
(define (position-get-row posn) (tlist-get-element ’Position posn 1))
(define (position-get-column posn) (tlist-get-element ’Position posn 2))

Here are some example interactions with our Position datatype:
> (define pos (make-position 2 1))
> pos
(Position 2 1)
> (get-position-row pos)
2
> (get-position-row (list 1 2))

Bad tag: 1 (expected Position) Error since input is not a Position.

Move. A move involves three positions: where the jumping peg starts, the po-
sition of the peg that is jumped and removed, and the landing position. One
possibility would be to represent a move as a list of the three positions. A better
option is to observe that once any two of the positions are known, the third po-
sition is determined. For example, if we know the starting position and the land-
ing position, we know the jumped peg is at the position between them. Hence,
we could represent a jump using just the starting and landing positions.

Another possibility is to represent a jump by storing the starting Position and the
direction. This is also enough to determine the jumped and landing positions.
This approach avoids the difficulty of calculating jumped positions. To do it, we
first design a Direction datatype for representing the possible move directions.
Directions have two components: the change in the column (we use 1 for right
and −1 for left), and the change in the row (1 for down and −1 for up).

We implement the Direction datatype using a tagged list similarly to how we
defined Position:

(define (make-direction right down)
(make-tlist ’Direction (list right down)))

(define (direction-get-horizontal dir) (tlist-get-element ’Direction dir 1))
(define (direction-get-vertical dir) (tlist-get-element ’Direction dir 2))

The Move datatype is defined using the starting position and the jump direction:

(define (make-move start direction)
(make-tlist ’Move (list start direction)))

(define (move-get-start move) (tlist-get-element ’Move move 1))
(define (move-get-direction move) (tlist-get-element ’Move move 2))

We also define procedures for getting the jumped and landing positions of a
move. The jumped position is the result of moving one step in the move di-
rection from the starting position. So, it will be useful to define a procedure that
takes a Position and a Direction as input, and outputs a Position that is one step
in the input Direction from the input Position.

(define (direction-step pos dir)
(make-position

(+ (position-get-row pos) (direction-get-vertical dir))
(+ (position-get-column pos) (direction-get-horizontal dir))))

Chapter 5. Data 97

Using direction-step we can implement procedure to get the middle and landing
positions.

(define (move-get-jumped move)
(direction-step (move-get-start move) (move-get-direction move)))

(define (move-get-landing move)
(direction-step (move-get-jumped move) (move-get-direction move)))

Board. The board datatype represents the current state of the board. It keeps
track of which holes in the board contain pegs, and provides operations that
model adding and removing pegs from the board:

make-board: Number→ Board
Outputs a board full of pegs with the input number of rows. (The stan-
dard physical board has 5 rows, but our datatype supports any number
of rows.)

board-rows: Board→ Number
Outputs the number of rows in the input board.

board-valid-position?: Board× Position → Boolean
Outputs true if input Position corresponds to a position on the Board;
otherwise, false.

board-is-winning?: Board→ Boolean
Outputs true if the Board represents a winning position (exactly one
peg); otherwise, false.

board-contains-peg?: Position→ Boolean
Outputs true if the hole at the input Position contains a peg; otherwise,
false.

board-add-peg : Board× Position→ Board
Output a Board containing all the pegs of the input Board and one addi-
tional peg at the input Position. If the input Board already has a peg at
the input Position, produces an error.

board-remove-peg : Board× Position→ Board
Outputs a Board containing all the pegs of the input Board except for
the peg at the input Position. If the input Board does not have a peg at
the input Position, produces an error.

The procedures for adding and removing pegs change the state of the board to
reflect moves in the game, but nothing we have seen so far, however, provides a
means for changing the state of an existing object.9 So, instead of defining these
operations to change the state of the board, they actually create a new board that
is different from the input board by the one new peg. These procedures take a
Board and Position as inputs, and produce as output a Board.

There are lots of different ways we could represent the Board. One possibility is
to keep a List of the Positions of the pegs on the board. Another possibility is to
keep a List of the Positions of the empty holes on the board. Yet another pos-
sibility is to keep a List of Lists, where each List corresponds to one row on the
board. The elements in each of the Lists are Booleans representing whether or
not there is a peg at that position. The good thing about data abstraction is we
could pick any of these representations and change it to a different representa-
tion later (for example, if we needed a more efficient board implementation). As

9We will introduce mechanisms for changing state in Chapter 9. Allowing state to change breaks
the substitution model of evaluation.

98 5.6. Data Abstraction

long as the procedures for implementing the Board are updated the work with
the new representation, all the code that uses the board abstraction should con-
tinue to work correctly without any changes.

We choose the third option and represent a Board using a List of Lists where
each element of the inner lists is a Boolean indicating whether or not the cor-
responding position contains a peg. So, make-board evaluates to a List of Lists,
where each element of the List contains the row number of elements and all the
inner elements are true (the initial board is completely full of pegs). First, we de-
fine a procedure make-list-of-constants that takes two inputs, a Number, n, and
a Value, val. The output is a List of length n where each element has the value
val.

(define (make-list-of-constants n val)
(if (= n 0) null (cons val (make-list-of-constants (− n 1) val))))

To make the initial board, we use make-list-of-constants to make each row of the
board. As usual, a recursive problem solving strategy works well: the simplest
board is a board with zero rows (represented as the empty list); for each larger
board, we add a row with the right number of elements.

The tricky part is putting the rows in order. This is similar to the problem we
faced with intsto, and a similar solution using append-list works here:

(define (make-board rows)
(if (= rows 0) null

(list-append (make-board (− rows 1))
(list (make-list-of-constants rows true)))))

Evaluating (make-board 3) produces ((true) (true true) (true true true)).

The board-rows procedure takes a Board as input and outputs the number of
rows on the board.

(define (board-rows board) (length board))

The board-valid-position? indicates if a Position is on the board. A position is
valid if its row number is between 1 and the number of rows on the board, and
its column numbers is between 1 and the row number.

(define (board-valid-position? board pos)
(and (>= (position-get-row pos) 1) (>= (position-get-column pos) 1)

(<= (position-get-row pos) (board-rows board))
(<= (position-get-column pos) (position-get-row pos))))

We need a way to check if a Board represents a winning solution (that is, contains
only one peg). We implement a more general procedure to count the number of
pegs on a board first. Our board representation used true to represent a peg.
To count the pegs, we first map the Boolean values used to represent pegs to
1 if there is a peg and 0 if there is no peg. Then, we use sum-list to count the
number of pegs. Since the Board is a List of Lists, we first use list-flatten to put
all the pegs in a single List.

(define (board-number-of-pegs board)
(list-sum
(list-map (lambda (peg) (if peg 1 0)) (list-flatten board))))

Chapter 5. Data 99

A board is a winning board if it contains exactly one peg:

(define (board-is-winning? board)
(= (board-number-of-pegs board) 1))

The board-contains-peg? procedure takes a Board and a Position as input, and
outputs a Boolean indicating whether or not that Position contains a peg. To im-
plement board-contains-peg? we need to find the appropriate row in our board
representation, and then find the element in its list corresponding to the posi-
tion’s column. The list-get-element procedure (from Example 5.3) does exactly
what we need. Since our board is represented as a List of Lists, we need to use it
twice: first to get the row, and then to select the column within that row:

(define (board-contains-peg? board pos)
(list-get-element (list-get-element board (position-get-row pos))

(position-get-column pos)))

Defining procedures for adding and removing pegs from the board is more com-
plicated. Both of these procedures need to make a board with every row identi-
cal to the input board, except the row where the peg is added or removed. For
that row, we need to replace the corresponding value. Hence, instead of defining
separate procedures for adding and removing we first implement a more general
board-replace-peg procedure that takes an extra parameter indicating whether
a peg should be added or removed at the selected position.

First we consider the subproblem of replacing a peg in a row. The procedure
row-replace-peg takes as input a List representing a row on the board and a
Number indicating the column where the peg should be replaced. We can de-
fine row-replace-peg recursively: the base case is when the modified peg is at the
beginning of the row (the column number is 1); in the recursive case, we copy
the first element in the List, and replace the peg in the rest of the list. The third
parameter indicates if we are adding or removing a peg. Since true values rep-
resent holes with pegs, a true value indicates that we are adding a peg and false
means we are removing a peg.

(define (row-replace-peg pegs col val)
(if (= col 1)

(cons val (cdr pegs))
(cons (car pegs) (row-replace-peg (cdr pegs) (− col 1) val))))

To replace the peg on the board, we use row-replace-peg to replace the peg on
the appropriate row, and keep all the other rows the same.

(define (board-replace-peg board row col val)
(if (= row 1)

(cons (row-replace-peg (car board) col val) (cdr board))
(cons (car board) (board-replace-peg (cdr board) (− row 1) col val))))

Both board-add-peg and board-remove-peg can be defined simply using board-
remove-peg . They first check if the operation is valid (adding is valid only if the
selected position does not contain a peg, removing is valid only if the selected
position contains a peg), and then use board-replace-peg to produce the modi-
fied board:

100 5.6. Data Abstraction

(define (board-add-peg board pos)
(if (board-contains-peg? board pos)

(error (format "Board already contains peg at position: ˜a" pos))
(board-replace-peg board (position-get-row pos)

(position-get-column pos) true)))

(define (board-remove-peg board pos)
(if (not (board-contains-peg? board pos))

(error (format "Board does not contain peg at position: ˜a" pos))
(board-replace-peg board (position-get-row pos)

(position-get-column pos) false)))

We can now define a procedure that models making a move on a board. Making
a move involves removing the jumped peg and moving the peg from the start-
ing position to the landing position. Moving the peg is equivalent to removing
the peg from the starting position and adding a peg to the landing position, so
the procedures we defined for adding and removing pegs can be composed to
model making a move. We add a peg landing position to the board that results
from removing the pegs in the starting and jumped positions:

(define (board-execute-move board move)
(board-add-peg
(board-remove-peg
(board-remove-peg board (move-get-start move))
(move-get-jumped move))

(move-get-landing move)))

Finding Valid Moves. Now that we can model the board and simulate making
jumps, we are ready to develop the solution. At each step, we try all valid moves
on the board to see if any move leads to a winning position (that is, a position
with only one peg remaining). So, we need a procedure that takes a Board as
its input and outputs a List of all valid moves on the board. We break this down
into the problem of producing a list of all conceivable moves (all moves in all
directions from all starting positions on the board), filtering that list for moves
that stay on the board, and then filtering the resulting list for moves that are legal
(start at a position containing a peg, jump over a position containing a peg, and
land in a position that is an empty hole).

First, we generate all conceivable moves by creating moves starting from each
position on the board and moving in all possible move directions. We break this
down further: the first problem is to produce a List of all positions on the board.
We can generate a list of all row numbers using the intsto procedure (from Exam-
ple 5.8). To get a list of all the positions, we need to produce a list of the positions
for each row. We can do this by mapping each row to the corresponding list:

(define (all-positions-helper board)
(list-map

(lambda (row) (list-map (lambda (col) (make-position row col))
(intsto row)))

(intsto (board-rows board)))

This almost does what we need, except instead of producing one List containing
all the positions, it produces a List of Lists for the positions in each row. The
list-flatten procedure (from Example 5.10) produces a flat list containing all the

Chapter 5. Data 101

positions.

(define (all-positions board)
(list-flatten (all-positions-helper board)))

For each Position, we find all possible moves starting from that position. We
can move in six possible directions on the board: left, right, up-left, up-right,
down-left, and down-right.

(define all-directions
(list
(make-direction −1 0) (make-direction 1 0) ; left, right
(make-direction −1 −1) (make-direction 0 −1) ; up-left, up-right
(make-direction 0 1) (make-direction 1 1))) ; down-left, down-right

For each position on the board, we create a list of possible moves starting at that
position and moving in each possible move directions. This produces a List of
Lists, so we use list-flatten to flatten the output of the list-map application into
a single List of Moves.

(define (all-conceivable-moves board)
(list-flatten

(list-map
(lambda (pos) (list-map (lambda (dir) (make-move pos dir))

all-directions))
(all-positions board))))

The output produced by all-conceivable-moves includes moves that fly off the
board. We use the list-filter procedure to remove those moves, to get the list of
moves that stay on the board:

(define (all-board-moves board)
(list-filter
(lambda (move) (board-valid-position? board (move-get-landing move)))
(all-conceivable-moves board)))

Finally, we need to filter out the moves that are not legal moves. A legal move
must start at a position that contains a peg, jump over a position that contains a
peg, and land in an empty hole. We use list-filter similarly to how we kept only
the moves that stay on the board:

(define (all-legal-moves board)
(list-filter

(lambda (move)
(and
(board-contains-peg? board (move-get-start move))
(board-contains-peg? board (move-get-jumped move))
(not (board-contains-peg? board (move-get-landing move)))))

(all-board-moves board)))

Winning the Game. Our goal is to find a sequence of moves that leads to a win-
ning position, starting from the current board. If there is a winning sequence of
moves, we can find it by trying all possible moves on the current board. Each of
these moves leads to a new board. If the original board has a winning sequence
of moves, at least one of the new boards has a winning sequence of moves.

102 5.6. Data Abstraction

Hence, we can solve the puzzle by recursively trying all moves until finding a
winning position.

(define (solve-pegboard board)
(if (board-is-winning? board)

null ; no moves needed to reach winning position
(try-moves board (all-legal-moves board))))

If there is a sequence of moves that wins the game starting from the input Board,
solve-pegboard outputs a List of Moves representing a winning sequence. This
could be null, in the case where the input board is already a winning board. If
there is no sequence of moves to win from the input board, solve-pegboard out-
puts false.

It remains to define the try-moves procedure. It takes a Board and a List of Moves
as inputs. If there is a sequence of moves that starts with one of the input moves
and leads to a winning position it outputs a List of Moves that wins; otherwise,
it outputs false.

The base case is when there are no moves to try. When the input list is null
it means there are no moves to try. We output false to mean this attempt did
not lead to a winning board. Otherwise, we try the first move. If it leads to a
winning position, try-moves should output the List of Moves that starts with the
first move and is followed by the rest of the moves needed to solve the board
resulting from taking the first move (that is, the result of solve-pegboard applied
to the Board resulting from taking the first move). If the first move doesn’t lead
to a winning board, it tries the rest of the moves by calling try-moves recursively.

(define (try-moves board moves)
(if (null? moves)

false ; didn’t find a winner
(if (solve-pegboard (board-execute-move board (car moves)))

(cons (car moves)
(solve-pegboard (board-execute-move board (car moves))))

(try-moves board (cdr moves)))))

Evaluating (solve-pegboard (make-board 5)) produces false since there is no way
to win starting from a completely full board. Evaluating (solve-pegboard (board-
remove-peg (make-board 5) (make-position 1 1))) takes about three minutes to
produce this sequence of moves for winning the game starting from a 5-row
board with the top peg removed:

((Move (Position 3 1) (Direction 0 −1))
(Move (Position 3 3) (Direction −1 0))
(Move (Position 1 1) (Direction 1 1))
(Move (Position 4 1) (Direction 0 −1))
. . . ; 8 moves elided
(Move (Position 5 1) (Direction 1 1)))

a. [?] Change the implementation to use a different Board representation, such
as keeping a list of the Positions of each hole on the board. Only the proce-
dures with names starting with board- should need to change when the Board
representation is changed. Compare your implementation to this one.

b. [?] The standard pegboard puzzle uses a triangular board, but there is no

Chapter 5. Data 103

reason the board has to be a triangle. Define a more general pegboard puzzle
solver that works for a board of any shape.

c. [??] The described implementation is very inefficient. It does lots of redun-
dant computation. For example, all-possible-moves evaluates to the same
value every time it is applied to a board with the same number of rows. It is
wasteful to recompute this over and over again to solve a given board. See
how much faster you can make the pegboard solver. Can you make it fast
enough to solve the 5-row board in less than half the original time? Can you
make it fast enough to solve a 7-row board?

5.7 Summary of Part I
To conclude Part I, we revisit the three main themes introduced in Section 1.4.

Recursive definitions. We have seen many types of recursive definitions and used
them to solve problems, including the pegboard puzzle. Recursive grammars
provide a compact way to define a language; recursive procedure definitions
enable us to solve problems by optimistically assuming a smaller problem in-
stance can be solved and using that solution to solve the problem; recursive data
structures such as the list type allow us to define and manipulate complex data
built from simple components. All recursive definitions involve a base case. For
grammars, the base case provides a way to stop the recursive replacements by
produce a terminal (or empty output) directly; for procedures, the base case
provides a direct solution to a small problem instance; for data structures, the
base case provides a small instance of the data type (e.g., null). We will see many
more examples of recursive definitions in the rest of this book.

Universality. All of the programs we have can be created from the simple subset
of Scheme introduced in Chapter 3. This subset is a universal programming
language: it is powerful enough to describe all possible computations. We can universal

programming
language

generate all the programs using the simple Scheme grammar, and interpret their
meaning by systematically following the evaluation rules. We have also seen the
universality of code and data. Procedures can take procedures as inputs, and
produce procedures as outputs.

Abstraction. Abstraction hides details by giving things names. Procedural ab-
straction defines a procedure; by using inputs, a short procedure definition can
abstract infinitely many different information processes. Data abstraction hides
the details of how data is represented by providing procedures that abstractly
create and manipulate that data. As we develop programs to solve more com-
plex problems, it is increasingly important to use abstraction well to manage
complexity. We need to break problems down into smaller parts that can be
solved separately. Solutions to complex problems can be developed by think-
ing about what objects need to be modeled, and designing data abstractions the
implement those models. Most of the work in solving the problem is defining
the right datatypes; once we have the datatypes we need to model the problem
well, we are usually well along the path to a solution.

With the tools from Part I, you can define a procedure to do any possible com-
putation. In Part II, we examine the costs of executing procedures.

104 5.7. Summary of Part I

