Type Checking

The first principle was security... A consequence of this principle is that every occurrence
of every subscript of every subscripted variable was on every occasion checked at run time
against both the upper and the lower declared bounds of the array. Many years later we
asked our customers whether they wished us to provide an option to switch off these checks
in the interests of efficiency on production runs. Unanimously, they urged us not to U~
they already knew how frequently subscript errors occur on production runs where failure
to detect them could be disastrous. I note with fear and horror that even in 1980, language
designers and users have not learned this lesson. In any respectable branch of engineering,
failure to observe such elementary precautions would have long been against the law.
Tony Hoare, The Emperor’s Old Clothes, 1980 Turing Award Speech

In this chapter, we change the Charme language in a way that does not
increase its expressiveness, but in fact reduces it. Reducing expressiveness
may seem undesirable, but in fact, a great deal of effort in modern language
design seeks to reduce language expressiveness.

The reason language designers want to reduce expressiveness it can con-
tribute to the goal of preventing programmers from expressing programs
that will crash or produce unexpected results when they are executed. Such
languages sacrifice expressiveness for the sake of truthiness'—increasing
the likelihood that a program means what its programmer intends.

A high level of truthiness is important when software is used to control a
physical device whose correct and continued function is essential to safety
such as software controlling a nuclear power plant, anti-lock brakes, or air-
craft avionics. In such cases, it is much better to reduce the expressiveness
of your programming language and get more errors when the software is
developed, than to get unexpected behaviors when the software is running.

1According to Merriam-Webster’s dictionary, truthiness has two different meanings: (1)
“truth that comes from the gut, not books” (due to Stephen Colbert); and (2) “the quality of
preferring concepts or facts one wishes to be true, rather than concepts or facts known to
be true” (due to the American Dialect Society). Neither of these definitions quite matches
how we use the word here to mean the actual meaning of the program is truthful to the
programmer’s intended meaning, but I know of no English word that better matches the
intended meaning.

David Evans, Computing: Explorations in Language, Logic, and Machines, May 15, 2009

latent

dynamic type checking

There’s no business like show
business, but there are several

businesses like accounting.
David Letterman

manifest

330 14.1. Types of Typing

14.1 Types of Typing

As introduced in Section 5.1, a type defines a possibly infinite set of values
and the operations that can be performed on them. For example, Number
is a type. Addition, multiplication, and comparisons can be performed on
Numbers.

In Scheme (and in Charme and LazyCharme), types are latent: they are not
explicitly denoted in the program text. Nevertheless, they are very impor-
tant for the correct execution of a Scheme program. If the value passed as
an operand is not of the correct type, an error will result. For example,

> (4 1 true)
Q +: expects type <number> as 2nd argument, given: true;
other arguments were: 1

Scheme has fairly strong type checking. If the types of operands do not
match the expected types, it reports an error. Other languages, such as
Python, have weaker type checking:

> 1+ True
2

Instead of reporting a type error when + is used with a Boolean value,
Python interprets the value of True as 1 and produces a result.

Both Scheme and Python have dynamic type checking. This means types
are checked only when an expression is evaluated. For example, evaluat-
ing (define (badtype a b) (4 (> a b) b)) does not produce a type error even
though their are no possible inputs for which it could make sense since the
body expression uses the primitive + procedure with a Boolean input. Ex-
pressions that are not well-typed produce errors when those expressions
are evaluated, but not earlier.

In this chapter, we develop an interpreter for the language StaticCharme
that manages types differently from the Charme language. Instead of using
latent types as is done in Scheme, Python, and Charme, StaticCharme uses
manifest types: every definition and parameter will include explicit type
information that describes the expected type of the variable or parameter.
This increases the length of the program text and sacrifices expressiveness,
but makes it easier to understand and reason about programs. To provide
manifest types, we change the language grammar to support explicit type
declarations. Many popular programming languages have manifest types
including Ada, C, C#, and Java.

Chapter 14. Type Checking 331

We also modify the Charme interpreter to perform static type checking. Static static type checking
type checking checks that expressions are well-typed when they are de-

fined, rather than waiting until they are evaluated. Static type checking

reduces the expressiveness of our programming language; some expres-

sions that would have values with dynamic type checking are no longer

valid expressions.

The advantage of static type checking is that it detects many programming
errors early. Whereas dynamic checking checks the types during an exe-
cution on one path through the program, static checking checks the types
before an execution on all possible paths through the program before any
path is executed. If a correct static type checker deduces the program is
well-typed, there is no input on which it could produce a run-time type
error. In many cases, it is much better to detect an error early, than to de- y

tect it later when a program is running. This is especially true in safety- =
critical software (such as flight avionics software) where a program failure %
can have disastrous results (such as a plane crashing). 'f‘ﬁ

14.2 Manifest Types Ariane 5

Rocket after run-time error

To provide manifest types, we modify the grammar for our language to in-
clude type declarations. Two rules need to change: definitions and lambda
expressions. We replace the original definition rule,

Definition ::= (define Name Expression)

with a rule that includes a type specification after the name:

Definition ::= (define Name : Type Expression)

We modify the lambda-expression grammar rule similarly to include a type
specification for each parameter:

Expression ::= ProcedureExpression
ProcedureExpression ::= (lambda (Parameters) Expression)
Parameters == € | Name : Type Parameters

The new nonterminal, Type, is used to describe a type specification. A
type specification can specify a primitive type. Like a primitive value, a

332 14.2. Manifest Types

primitive expression is pre-defined by the language and its meaning cannot
be broken into smaller parts. StaticCharme supports only two primitive
types: Number (for representing numbers), and Boolean (for representing
the Boolean values true and false).

Type = PrimitiveType
PrimitiveType ::= Number | Boolean

We also need constructs for specifying procedure types. The type of a pro-
cedure is specified by the type of it inputs (that is, a list of the input types),
and the type of its results (a Charme procedure can only return one value,
so the result type is a single type). The arrow (—, or —> in program text)
symbol is used to denote a procedure type, with the operand type list on
the left side of the arrow and the result type on the right side of the arrow.
To avoid ambiguity when specifying procedures that have procedure result
types, we use parentheses around the procedure type specification.

Type 2= ProcedureType
Procedurelype ::= (ProductType — Type)
ProductType == (TypeList)

TypeList == Type TypeList

TypeList = €

For example,
(define x : Number 3)

defines x as a Number and initializes its value to 3.

The definition,

(define square : (Number) — Number)
(lambda (x : Number) (x x x)))

defines square as a procedure that takes one Number input and produces a
Number as its output.

Here is a definition of a compose procedure that takes two procedures as
inputs and produces a procedure as its output:

Chapter 14. Type Checking 333

(define compose : (((Number) — Number) ((Number) — Number))
-> ((Number) — Number))
(lambda (f : (Number) — Number)
¢ : ((Number) — Number))
(lambda (x : Number) (g (f x)))))

The compose example reveals one of the ways StaticCharme reduces the ex-
pressiveness of Charme. In addition to requiring more than twice as many
characters to define as the Scheme compose procedure, this procedure only
works on a small subset of the inputs for which the Scheme compose pro-
cedure works, namely procedures that take Number inputs and produce a
Number output.

It is not possible in StaticCharme to define a single compose procedure that
works on as many inputs as the Scheme compose procedure, (lambda (f g)
(lambda (x) (g (f x)))). For example, the Scheme compose procedure works
on inputs of type (((Any) — Boolean) ((Boolean) — Boolean)) such as (com-
pose zero? not). In StaticCharme, we would need do define different compo-
sition procedures for each input type.

14.3 Representing Types

We use Python classes to represent types in our StaticCharme interpreter.
To avoid confusion with Python’s built-in type keyword, we will prepend a
C (for “Charme”) to the names of the corresponding classes. Figure 14.1
shows the class hierarchy for the Python classes used to represent Stat-
icCharme types. The CPrimitiveType, CProductType, CProcedureType, and
CErrorType classes all inherit from the CType class.

The CType class defines methods for determining if a type is of a given kind

Ya Y

CType

_—a

CPrimitiveType CProductType

CProcedureTyp%J CErrorType

C)\ A

Figure 14.1. Class hierarchy for representing types.

334 14.3. Representing Types

(e.g., isPrimitiveType returns true only when invoked on a CPrimitiveType
object. In the superclass, all of these methods are defined to return False.

class CType:
def isPrimitiveType(self): return False
def isProcedureType(self): return False
def isProductType(self): return False
def isError(self): return False

The subclass will override the appropriate method to return True, and de-
fine additional methods to implement the type. The most interesting method
each subclass provides is the matches method. It takes a CType object as its
input, as well as the self object, and outputs True if the input type matches
the self type.

Primitive Types. The CPrimitiveType class is used to represent a primitive
type:
class CPrimitiveType(CType):
def __init__(self, s): self._name = s
def __str__(self): return self._name
def isPrimitiveType(self): return True

def matches(self, other):
return other.isPrimitiveType() and self._name == other._name

The class declaration syntax, class CPrimitiveType(CType), defines the class
CPrimitiveType as a subclass of CType; CPrimitiveType inherits all the meth-
ods defined by the CType class. This is similar to how we used make-subobject
to provide subclassing in Chapter 11.

In StaticCharme there are only two primitive types, Number and Boolean.
To support easily adding more primitive types, however, we represent prim-
itive types using a string that is the type name. The instance variable, _name
stores the name of a primitive type. The constructor method takes a string
that names the primitive type. So, the primitive number type is constructed
using CPrimitiveType('Number').

The __str__ method outputs a string representation of the object, in this
case, just its name. The Python syntax str(obj) invokes the __str__ method
of obj. This is useful for printing objects in a human-readable way.

The isPrimitiveType method is defined to always return True. This overrides
the definition in the CType class which always returns False.

The matches method is used to determine when two types are compatible. It
returns True only if the other type is the same primitive type by first check-
ing if the other object is a primitive type, and if it is, checking if they have

Chapter 14. Type Checking 335

the same name. The Python and expression is similar to the Scheme special
form: the second expression is only evaluated if the first expression is true.

Procedure Types. The CProcedureType class represents a procedure type:

class CProcedureType(CType):
def __init__(self, args, rettype):
self._args = args
self._rettype = rettype
def _ str__(self):
return (' + str(self._args) + ' —> "'+ str(self._rettype) +")'
def isProcedureType(self): return True
def getReturnType(self): return self._rettype
def getParameterTypes(self): return self._args
def matches(self, other):
return other.isProcedureType() \
and self._args.matches(other._args) \
and self._rettype.matches(other._rettype)

For procedure types to match, both the argument types and the return type
must match.

Product Types. The CProductType class represents a list of types.

class CProductType(CType):
def __init__(self, types): self._types = types
def _ str__ (self):
res ="('
firstone = True
for t in self._types:
if firstone: firstone = False
else:res =res + "'
res = res + str(t)
res = res + ")’
return res
def isProductType(self): return True
def matches(self, other):
if other.isProductType():
st = self._types
ot = other._types
if len(st) == len(ot): # number of types must match
for i in range(0, len(st)):
if not st[i].matches(ot[i]): return False
reached end of loop; all matched so types match
return True
return False

336 14.4. Modifying the Evaluator

Type Errors. The CErrorType class is used to represent type errors. It has an
instance variable, _message, for describing the type error. Since CErrorType
represents a type error, it does not match any type and matches is always
returns False.

class CErrorType(CType):
def __init__(self, msg): self._msg = msg
def __str__(self): return '<Type Error:' + self._msg + '>'
def getMessage(self): return self._msg
def matches(self, other): return False
def isError(self): return True

Constructing Types. Since we modified the grammar to include type
specifications, we also need a procedure that takes the result of parsing a
type specification and produces the corresponding CType object.

def parseType(p):
if isinstance(p, str):
if p == 'Number": return CPrimitiveType('Number")
elif p =='Boolean': return CPrimitiveType('Boolean’)
else: evalError('Undefined type: ' + p)
else:
if len(p) == 3 and p[1] =="—>"
return CProcedureType(parseType(p[0]), parseType(p[2]))
else: # must be product type
return CProductType(map(parseType, p))

14.4 Modifying the Evaluator

This section describe the changes to the interpreter made to associate types
with names. We change the Environment and Procedure classes to add types,
and modify the evaluation rule for definitions and lambda expressions to
account for the type specifications. We also need to set up the initial global
environment so names in the global environment have associated types.
Section 14.5 describes the extensions to implement static type checking.

Typed environments. In StaticCharme, a variable name has both an as-
sociated value and an associated type. We modify the Environment class so
that instead of associating just a value with each name in the frame, each
place holds a <type, value> pair.

class Environment:
def __init__(self, parent):
self._parent = parent

Chapter 14. Type Checking 337

self._frame ={}
def addVariable(self, name, typ, value): # added typ parameter
self._frame[name] = (typ, value) # replaced value with tuple
def _lookupPlace(self, name): # acded
if self._frame.has_key(name): return self._frame[name]
elif (self._parent): return self._parent._lookupPlace(name)
else: return None
def lookupVariable(self, name): # rewritten to use _lookupPlace
return self._lookupPlace(name)[1]
def lookupVariableType(self, name): # added
place = self._lookupPlace(name)
if place: return place[0]
else: return CErrorType("Name not found: " + name)

We use a Python tuple, (typ, value), to represent a pair. Tuple elements are
selects identically to list elements: p[0] selects the first element and p[1]
selects the second element in the pair p.

The addVariable method takes an additional parameter, typ that represents
the type of the variable.? It adds a new entry in the _frame that is a tuple of
the type and value associated with the name.

The _lookupPlace method returns the <type, value> tuple associated with a
name.? The lookupVariable method returns the value associated with a vari-
able.* The lookupVariableType method, on the other hand, needs to deal with
the situation where an undefined name is used. It returns a CErrorType ob-
ject that represents and describes the undefined name error.

Definitions. The StaticCharme grammar has a different rule for definitions
than standard Scheme because of the added type specification. The evalu-
ation rule is modified accordingly to define the variable with the addition
of its type.

def evalDefinition(expr, env):
assert isDefinition(expr)
assert len(expr) == 4 and expr[2] ==""
env.addVariable(expr[1], parseType(expr[3]), meval(expr[4], env))

2We avoid using the proper spelling, type, since that is a keyword in Python.

3The _at the beginning of the method name hides the method from external users of the
class. Methods beginning with a _ can only be called from within the class implementation.
This supports data abstraction; by hiding the _lookupPlace method we avoid exposing the
tuple representation of (typ, value) pairs.

41t is not necessary here to check if the name is defined (although defensive program-
ming practice might suggest performing such a check anyway), since the type checking that
will be done before an expression is evaluated ensures that all names used must be defined.

338 14.4. Modifying the Evaluator

Procedures. The lambda expression in StaticCharme includes a type spec-
ification for each parameter name. We modify the Procedure class to store
this information in a procedure object:

class Procedure:

def __init__(self, params, typ, body, env):
self._params = params
self._body = body
self._typ = typ # added
self._env = env

def get ParamTypes(self):
return self._typ

... # other methods unmodified

The evaluation rule for lambda-expressions extracts the type specifications
from the parameter list and constructs a Procedure object:

def evalLambda(expr, env):

assert isLambda(expr)

assert len(expr) ==

params = expr[1]

paramtypes = []

paramnames = []

assert len(params) % 3 == 0

for i in range(0, len(params) / 3):
name = params|[i » 3]
paramnames.append(name)
typ = parseType(params[(i * 3) + 2])
paramtypes.append(typ)

return Procedure(paramnames, paramtypes, expr[2], env)

We also need to change the mapply procedure to put the types of the param-
eters in the new frame.

def mapply(proc, operands):
if (isPrimitiveProcedure(proc)):
return proc(operands)
elif isinstance(proc, Procedure):
params = proc.getParams()
types = proc.getParamTypes() # added
newenv = Environment(proc.getEnvironment())
if len(params) '= len(operands):
evalError ('Parameter length mismatch: %s given operands %s'
% (str(proc), str(operands)))
for i in range(0, len(params)):
newenv.addVariable(params[i], types[i], operands[i]) # added type

Chapter 14. Type Checking 339

return meval(proc.getBody(), newenv)
else:
evalError('Application of non—procedure: %s' % (proc))

Global Environment. The primitives placed in the global environment
now must have associated types, so initializeGlobalEnvironment is modified
to include the appropriate types.

def initializeGlobalEnvironment():

global globalEnvironment
globalEnvironment = Environment(None)
globalEnvironment.addVariable('true', CPrimitiveType('Boolean'), True)
globalEnvironment.addVariable('false', CPrimitiveType('Boolean'), False)
globalEnvironment.addVariable \

('+', typeFromString('((Number Number) —> Number)'), primitivePlus)
globalEnvironment.addVariable \

('—', typeFromString('((Number Number) —> Number)'), primitiveMinus)
globalEnvironment.addVariable \

('+', typeFromString('((Number Number) —> Number)'), primitiveTimes)
globalEnvironment.addVariable \

('=', typeFromString('((Number Number) —> Boolean)'), primitiveEquals)
globalEnvironment.addVariable \

('<', typeFromString('((Number Number) —> Boolean)'), primitiveLessThan)

The typeFromString procedure provides a convenient way for specifying a
type using a string, as it would be done in a StaticCharme program.

def typeFromString(s):
p = parse(s)
assert len(p) ==
return parseType(p[0])

14.5 Checking Types

To implement static type checking, we define a procedure typecheck that is
analogous to meval. Like meval, it takes two inputs, an expression and an
environment. The result of an application of typecheck is the type of the
input expression in the input environment. If the expression is not well
typed, the result is an CErrorType object. Otherwise, it will be an object that
represents the type of the expression.

The definition of typecheck is similar to meval. It has a clause for each kind
of StaticCharme expression, but instead of evaluating the expression by
calling eval Expr it checks its type using typeExpr.

340 14.5. Checking Types

def typecheck(expr, env):
if isPrimitive(expr): return typePrimitive(expr)
elif isIf(expr): return typelf(expr, env)
elif isLambda(expr): return typeLambda(expr, env)
elif isDefinition(expr): return typeDefinition(expr, env)
elif isName(expr): return typeName(expr, env)
elif isApplication(expr): return typeApplication(expr, env)
else: evalError ("Unknown expression type: " + str(expr))

To implement type checking, we implement the typeExpr procedure for
each language construct. We describe primitives and if expressions first,
and then describe the procedures for typechecking names, definitions, ap-
plications, and lambda expressions.

Primitives. The typePrimitive procedure takes a primitive expression and
outputs its type.

def typePrimitive(expr):
if isNumber(expr): return CPrimitiveType('Number')
elif isinstance(expr, bool): return CPrimitiveType('Boolean’)
elif callable(expr): return globalEnvironment.reverseLookupType(expr)
else: assert False

The type of number and Boolean expressions is straightforward. Deal-
ing with primitive procedures is more difficult. They are represented by
Python procedures, so the predicate callable(expr) is true if expr is a prim-
itive procedure. But, there is no easy way to determine the type of the
procedure.

The solution we use is to search the global environment for a name whose
value matches the primitive procedure, and use the associated type. This
is done by adding a reverseLookupType method to the Environment class that
finds the type of the place whose value matches a given value. Since all
primitive procedures are associated with names in the global environment,
we can use the reverse lookup to find the type of a primitive procedure.

class Environment:
... # other methods
def reverseLookupType(self, val):
for entry in self._frame.itervalues():
if entry[1] == val: return entry[0]
return CErrorType("Value not found")

If. The typelf procedure checks an if-expression is well-typed and outputs
the type of its value. The predicate must have type Boolean. The conse-
quent and alternate expressions may have any type, but their types must

Chapter 14. Type Checking 341

be the same. The type of the if-expression is the type of consequence and
alternative expressions.

def typelf(expr, env):
if len(expr) = 4: evalError('Badly formed if: ' + str(expr))

Predicate must be a Boolean

predtype = typecheck(expr[1], env)

if not CPrimitiveType('Boolean').matches(predtype):
return CErrorType('Mistyped predicate: ' + str(predtype))

Types of consequent and alternate expressions must match
constype = typecheck(expr(2], env)
alttype = typecheck(expr[3], env)
if not constype.matches(alttype):
return CErrorType('Inconsistent branch types: %s, %s'
% (constype, alttype))
return constype

Names. The type of a name is stored in the environment, so we can type
check a name by looking up its type in the environment.

def typeName(expr, env):
return env.lookupVariableType(expr)

The Environment.lookupVariableType method produces an evaluation error if
the name is not defined, so typeName also checks that all names are defined.

Definitions. A definition has no type (since it has no value), but type
checking a definition may still detect a type error. Hence, typeDefinition
either returns None (to represent no type) or a CErrorType object if the def-
inition is mistyped. The type checking rule for a definition is that the type
of the value expression must match the specified type.

One subtlety is caused by our desire to support recursive definitions. The
value subexpression may use the name that is being defined. This means
that we should type check the value subexpression in an environment in
which the new name is defined with the specified type.

We support this by creating a new environment whose parent is the input
environment that contains the variable with its declared type and value
None. The value of the name is not yet known, but type checking does not
depend on its value, so any value will do here. We create a new environ-
ment instead of using the input environment since if the definition is not
well-typed, it should not be added to the environment. Names are added
to the environment only when the definition is evaluated.

342 14.5. Checking Types

def typeDefinition(expr, env):
assert isDefinition(expr)
if len(expr) != 5: evalError ('Bad definition: %s' % str(expr))
name = expr[1]
if isinstance(name, str):
if expr[2] 1="1"
return CErrorType ('Definition missing type: %s' % str(expr))
typ = parseType(expr([3])
newenv = Environment(env)
newenv.addVariable(name, typ, None) # Support recursive definitions
etyp = typecheck(expr[4], newenv)
if not typ.matches(etyp):
return CErrorType \
('Mistyped definition: %s declared type %s, actual type %s'
% (name, typ, etyp))
return None # definition has no type
else:
return CErrorType ("Bad definition: %s" % str(expr))

To find the type of the value subexpression (etyp), the procedure recursively
calls typecheck on the subexpression. If the result does not match the spec-
ified type (typ), the definition is mistyped and a CErrorType object is re-
turned. Note that this outcome also results if the value subexpression itself
is not well-typed, since in that case the call to typecheck(expr[4], env) will
result in a CErrorType object which does not match any type.

Applications. An application expression is well-typed only if the first
subexpression is a procedure. To be well-typed, the operand expressions
must match the parameter types for that procedure.

def typeApplication(expr, env):
proctype = typecheck(expr[0], env)
if not proctype.isProcedureType():
return CErrorType('Application of non—procedure: ' + str(expr[0]))
optypes = map (lambda op: typecheck(op, env), expr[1:])
optype = CProductType(optypes)
if not proctype.get ParameterTypes().matches(optype):
return CErrorType('Parameter type mismatch: expected %s, given %s'
% (proctype.getParameterTypes(), optype))
return proctype.getReturnType()

The optypes variable is initialized to the result of mapping the typecheck pro-
cedure on each of the operand subexpressions. This produces a list of type
objects (possibly including CErrorType objects if any of the operand subex-
pressions is not well-typed). A CProductType object is constructed from the

Chapter 14. Type Checking 343

operand type list. The if statement checks if the operand types match the
expected parameter types for the procedure. If they match, the type of the
application expression is the return type of the applied procedure.

Lambda Expressions. To type check a lambda expression, we need to
determine the type that will result from an application of the procedure.
This involves partially applying the procedure even though we have no
operands. Instead, we create a new environment containing the places
corresponding to each parameter. Because of the type specifications, their
types are known, but no value is available since the procedure is not being
applied. We use None for the value, but rely on the nature of type checking.
Type checking should never depend on actual values, only on the types
which are known because of the parameter type specifications.

def typeLambda(expr, env):
assert isLambda(expr)
if len(expr) = 3: evalError ('Bad lambda expression: %s' % str(expr))
newenv = Environment(env)
params = expr([1]
paramnames = []
paramtypes = []
assert len(params) % 3 == 0
for i in range(0, len(params) / 3):
assert params[(ix3)+1] ==""'
name = params[i+3]
typ = parseType(params[(i3)+2])
paramnames.append(name)
paramtypes.append(typ)
newenv.addVariable(name, typ, None)
resulttype = typecheck(expr[2], newenv)
return CProcedureType(CProductType(paramtypes), resulttype)

The type of the lambda expression is a procedure type with the parameter
types given in the parameter type specifications, and the result type deter-
mined by type checking the partial application.

Evaluator Loop. The evalLoop procedure is changed to type check every
expression before it is evaluated. If the expression is not well-typed, type
checking produces an error which is displayed. Otherwise, the expression
is then evaluated.

def evalLoop():
initializeGlobal Environment()
while True:
inv = raw_input('StaticCharme> ")
if inv == 'quit": break

344 14.5. Checking Types

for expr in parse(inv):
typ = typecheck(expr, globalEnvironment) # added
if typ and typ.isError(): # added
print 'Error: ' + typ.getMessage()
else:
res = meval(expr, globalEnvironment)
if res = None: print str(res)

Examples. Here are some example evaluations using our StaticCharme
interpreter:

StaticCharme> (define 7 : Number 3)
StaticCharme> (define b : Boolean 3)
Error: Mistyped definition: b declared type Boolean, actual type Number
StaticCharme> (define square : (Number) -> Number)
(lambda (x : Number) (x x x)))
StaticCharme> (square 3)
9
StaticCharme> (square true)
Error: Parameter type mismatch: expected (Number), given (Boolean)
StaticCharme> (square 3 5)
Error: Parameter type mismatch: expected (Number), given (Number Number)
StaticCharme> (define f : (Number) -> Number)
(lambda (x : Number) (< x 3)))
Error: Mistyped definition: f declared type ((Number) -> Number), actual type
((Number) -> Boolean)
StaticCharme> (define sapp : (() -> Number) (lambda () (square true)))
Error: Mistyped definition: sapp declared type (() -> Number), actual type (()
-> <Type Error: Parameter type mismatch: expected (Number), given
(Boolean)>)
StaticCharme> (if (< 3 4) true false)
True
StaticCharme> (if (4 3 4) true 6)
Error: Mistyped predicate: Number
StaticCharme> (if (< 3 4) true 6)
Error: Inconsistent branch types: Boolean, Number
StaticCharme> (define fact:((Number) -> Number)
(lambda (n:Number) (if (=n 1) 1 (x n (fact (— n 1))))))
StaticCharme> (fact 10)
3628800

Note that type errors are reported for definitions, not when the defined
names are used.

Chapter 14. Type Checking 345

Exercise 14.1. Give the type of each of the following StaticCharme expres-
sions. If the expression is not well-typed, explain the type error. Assume
the square and compose definitions from Section 14.2.

(+ 1 true)

compose

IS

compose square square)

&

(
(compose (lambda (a : Boolean) a) square)

(+123)

(square ((lambda (a : Number b : Number) (> a b)) 3 4))
(define infinite-loop:(() -> Number) (lambda () (infinite-loop)))
(square (infinite-loop))

5 ® - o0

Exercise 14.2. Extend the interpreter to support a conditional special
form similar to the Scheme cond expression. The typeConditional procedure
should check that all of the predicate expressions evaluate to a Boolean
value. In order for a conditional expression to be type correct, the conse-
quent expressions of each clause must be of the same type. The type of a
conditional expression is the type of each consequent expression.

Exercise 14.3. A stronger type checker would require that at least one
of the conditional predicates must evaluate to a true value. Otherwise, the
conditional expression does not have the required type (instead, it pro-
duces a run-time error). Either modify your typeConditional procedure to
implement this stronger typing rule, or explain why it is impossible to do
so. (Hint: see Chapter 15.)

14.6 Summary

Moditying our Charme interpreter to implement a language with mani-
fest types and static type checking reduces the expressiveness of the lan-
guage in ways that make it possible to detect programming errors earlier
and more reliably. For safety-critical software, it is far better to detect an
error before a program is executed, than to encounter an error at run-time,
or to produce an incorrect result.

