Laziness

Modern methods of production have given us the possibility of ease and security for
all; we have chosen, instead, to have overwork for some and starvation for others.
Hitherto we have continued to be as energetic as we were before there were machines;
in this we have been foolish, but there is no reason to go on being foolish forever.
Bertrand Russell, In Praise of Idleness, 1932

By changing the language interpreter, we can change the evaluation rules
of the programming language. This enables a new problem-solving strat-
egy: if the solution to a problem cannot be expressed easily in an existing
language, define and implement an interpreter for a new language in which
the problem can be solved more easily.

In this chapter, we explore a variation on Charme we call LazyCharme.
LazyCharme changes the application evaluation rule so that operand ex-
pressions are not evaluated until their values are needed. This is known as
lazy evaluation.

Lazy evaluation enables many procedures which would otherwise be awk-
ward to express to be defined concisely. Since both Charme and Lazy-
Charme are universal programming languages they can express the same
set of computations: all of the procedures we define that take advantage
of lazy evaluation could be defined with eager evaluation (for example, by
first defining an interpreter for a lazy evaluation language as we do in this
chapter).

13.1 Lazy Evaluation

The Charme interpreter defined in the previous chapter as well as the stan-
dard Scheme language evaluate application expressions eagerly: all operand
subexpressions are evaluated whether or not their values are needed. For
example, evaluating ((lambda (a) 3) (loop-forever)) (where loop-forever is a
procedure that never terminates) will not finish.

Eager evaluation means that any expression which does not evaluate all its

David Evans, Computing: Explorations in Language, Logic, and Machines, May 15, 2009

lazy evaluation



Much of my work has come
from being lazy.
John Backus

thunk

320 13.1. Lazy Evaluation

sub-expressions must be a special form. For example, there is no way to
define a procedure that behaves like the if special form. We could attempt
to define such a procedure by first defining true and false as procedures that
take two parameters and output the first or second parameter:

(define true (lambda (a b) a))
(define false (lambda (a b) b))

These definitions provide the expected behavior similar to the if special
form with this definition of ifp:

(define ifp (lambda (p c a) (p c a)))

For example, (ifp true 3 4) evaluates to 3 and (ifp false 3 4) evaluates to 4.

For uses where evaluating the consequent and alternate expressions does
not produce an error, side-effect, or take a noticeable amount of time, the ifp
procedure behaves indistinguishably from the special form (this assumes
the values for true and false produced by the primitive procedures are changed
accordingly to produce the values of true and false defined above).

When it is possible to tell if the alternate or consequent expressions is eval-
uated, however, the ifp procedure behaves very differently from the if-
expression special form. For example, (ifp false (cdr null) 1) evaluates to
an error because (cdr null) attempts to apply cdr to a value that is not a Pair.
With the if special form, though, the consequent expression is only evalu-
ated when the predicate expression is true. Hence, the expression (if false
(cdr null) 1) evaluates to 1.

Although this example is contrived, we often take advantage of this prop-
erty of the if special form in recursive definitions. Nearly every recursive
procedure we define for processing lists has a base case like (if (null? p) ...)
where the alternate expression applies list-extracting procedures list (cdr
p). If it were not for the special evaluation rule for if-expressions, the if
expression would produce an error when the end of the list is reached.

With lazy evaluation, an expression is not evaluated until its value is needed.
Lazy evaluation changes the evaluation rule for applications of constructed
procedures. Instead of evaluating all operand expressions, lazy evaluation
delays evaluation of an operand expression until the value of the parameter
is needed. To keep track of what is needed to perform the evaluation when
and if it is needed, a special object known as a thunk is created and stored
in the place associated with the parameter name. By delaying evaluation of
operand expressions until their value is needed, we can enable programs
to define procedures that conditionally evaluate their operands, such as the
ifp procedure.



Chapter 13. Laziness 321

The lazy evaluation rule for applying constructed procedures is:

Lazy Application Rule 2: Constructed Procedures. To apply a con-
structed procedure:

1. Construct a new environment, whose parent is the environ-
ment of the applied procedure.

2. For each procedure parameter, create a place in the frame of
the new environment with the name of the parameter. Put a
thunk in that place, which is an object that can be used later
to evaluate the value of the corresponding operand expres-
sion if and when its value is needed.

3. Evaluate the body of the procedure in the newly created envi-
ronment. The resulting value is the value of the application.

We will encourage you to

The rule is identical to the Statefull Application Rule except for the bolded develop the thm.gm% virtues
of a programmer: Laziness,

part of step 2. In the next section, we explain how to modify the Charme Impatience, and Hubris.
interpreter from the previous chapter to implement lazy evaluation. In Sec- Larry Wall, Programming Perl
tion 13.3, we provide some examples of programming with lazy evaluation.

Confusingly, lazy evaluation is also known as normal order evaluation, even

though in the Scheme language it is not the normal evaluation order.! Scheme

is an applicative-order language, which means that all arguments are evalu- applicative-order
ated as part of the application rule, whether or not their values are needed

by the called procedure.

13.2 Delaying Evaluation

To implement lazy evaluation we modify the interpreter to implement the
lazy application rule that delays evaluating the operand expressions un-
til they are needed. We start by defining a Python class for representing
thunks and then modify the interpreter to support lazy evaluation.

Thunks. A thunk keeps track of an expression whose evaluation is de-
layed until it is needed. Once the evaluation is performed, the resulting
value is saved so the expression does not need to be re-evaluated the next
time the value is needed.

ISome languages (including Haskell and Miranda) provide lazy evaluation as the stan-
dard application rule.



322 13.2. Delaying Evaluation

Thus, a thunk is in one of two possible states: unevaluated (the operand
expression has not yet been needed, so it has not been evaluated and its
value is unknown), and evaluated (the operand expression’s value has been
needed at least once, and its known value is recorded).

The Thunk class implements thunks:

class Thunk:
def __init__(self, expr, env):
self._expr = expr
self._env = env
self._evaluated = False
def value(self):
if not self._evaluated:
self._value = forceeval(self._expr, self._env)
self._evaluated = True
return self._value

A Thunk object keeps track of the expression in the _expr instance variable.
Since the value of the expression may be needed when the evaluator is
evaluating an expression in some other environment, it also keeps track of
the environment in which the thunk expression should be evaluated in the
_env instance variable.

The _evaluated instance variable is a Boolean that records whether or not
the thunk expression has been evaluated. Initially this value is False. After
the expression is evaluated, the _value instance variable keeps track of its
value.

The value method uses forceeval (defined in the next section) to obtain the
evaluated value of the thunk expression and stores that result in the _value
instance variable.

The isThunk procedure returns True only when its parameter is a thunk:

def isThunk(expr): return isinstance(expr, Thunk)

Delayed and forced evaluation. To implement lazy evaluation, we change
the evaluator so there are two different evaluation procedures: meval is the
standard evaluation procedure (which leaves thunks in their unevaluated
state), and forceeval is the evaluation procedure that forces thunks to be
evaluated to values. The interpreter uses meval when the actual expression
value may not be needed, and forceeval to force evaluation of thunks when
the value of an expression is needed.

In the meval procedure, a thunk evaluates to itself. We add a new elif clause
for thunk objects to the meval procedure:



Chapter 13. Laziness 323

elif isThunk(expr): # Added to support lazy evaluation
return expr # A thunk evaluates to itself

The forceeval procedure first uses meval to evaluate the expression normally.
If the result is a thunk, it uses the Thunk.value method to force evaluation
of the thunk expression. The Thunk.value method uses forceeval to find the
value of the thunk expression, so any thunks inside the expression will be
recursively evaluated.

def forceeval(expr, env):
value = meval(expr, env)
if isThunk(value): return value.value() # force evaluation of Thunk
else: return value

Next, we change the application rule to perform delayed evaluation and
change a few other places in the interpreter to use forceeval instead of meval
to obtain the actual values when they are needed.

Lazy applications. We change the evalApplication procedure to delay eval-
uation of the operants by creating Thunk objects representing each operand.
Only the first subexpression (the procedure to be applied) must be evalu-
ated. Hence, evalApplication uses forceeval to obtain the value of the first
subexpression, but makes Thunk objects for the operand expressions:

def eval Application(expr, env):
ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])
return mapply(forceeval(expr[0], env), ops)

Primitive applications. To apply a primitive, we need the actual values
of its operands, so must force evaluation of any thunks in the operands.
Hence, the definition for mapply forces evaluation of the operands to a
primitive procedure:

def mapply(proc, operands):
def deThunk(expr):
if isThunk(expr): return expr.value()
else: return expr

if (isPrimitiveProcedure(proc)):
ops = map (deThunk, operands)
return proc(ops)

elif isinstance(proc, Procedure):
... #same as in Charme interpreter

Decisions. To evaluate an if-expression, it is necessary to know the actual
value of the predicate expressions. We change the evallf procedure to use



324 13.3. Lazy Programming

forceeval when evaluating the predicate expression:

def evallf(expr,env):
if forceeval(expr[1], env) != False: return meval(expr[2],env)
else: return meval(expr[3],env)

This forces the predicate to evaluate to a value (even if it is a thunk), so
its actual value can be used to determine how the rest of the if expression
evaluates; the evaluations of the consequent and alternate expressions are
left as mevals since it is not necessary to force them to be evaluated yet.

Printing results. The final change to the interpreter is to force evalua-
tion when the result is displayed to the user in the evalLoop procedure by
replacing the call to meval with forceeval.

13.3 Lazy Programming

Lazy evaluation enables programming constructs that are not possible with
eager evaluation. For example, with lazy evaluation the ifp procedure de-
fined at the beginning of this chapter behaves like the if-expression special
form.

Lazy evaluation also enables programs to deal with seemingly infinite data
structures. This is possible since only those values of the apparently infinite
data structure that are used need to be created.

Suppose we define procedures similar to the Scheme procedures for ma-
nipulating pairs:

(define cons (lambda (a b) (lambda (p) (if p a b))))
(define car (lambda (p) (p true)))
(define cdr (lambda (p) (p false)))

(define null false)
(define null? (lambda (x) (= x false)))

These behave similarly to the corresponding Scheme procedures, except in
LazyCharme their operands are evaluated lazily. This means, we can define
an infinite list:

(define ints-from (lambda (1) (cons n (ints-from (+ n 1)))))

With eager evaluation, (ints-from 1) would never finish evaluating; it has
no base case for stopping the recursive applications. In LazyCharme, how-
ever, the operands to the cons application in the body of ints-from are not



Chapter 13. Laziness 325

evaluated until they are needed. Hence, (ints-from 1) terminates. It pro-
duces a seemingly infinite list, but only the evaluations that are needed are
performed:

LazyCharme> (car (ints-from 1))

1

LazyCharme> (car (cdr (cdr (cdr (ints-from 1)))))
4

Some evaluations fail to terminate even with lazy evaluation. For example,
assume the standard definition of list-length:

(define list-length
(lambda (Ist) (if (null? Ist) O (4 1 (list-length (cdr Ist))))))

An evaluation of (length (ints-from 1)) never terminates. Every time an ap-
plication of list-length is evaluated, it applies cdr to the input list, which
causes ints-from to evaluate another cons, increasing the length of the list by
one. The actual length of the list is infinite, so the application of list-length
does not terminate.

Lists with delayed evaluation can be used in useful programs. Reconsider
the Fibonacci sequence from Chapter 7. Using lazy evaluation, we can de-
fine a list that is the infinitely long Fibonacci sequence:2

(define fibo-gen (lambda (a b) (cons a (fibo-gen b (+ a b)))))
(define fibos (fibo-gen 0 1))

The n'" Fibonacci number is the n'" element of fibos:
(define fibo (lambda (1) (list-get-element fibos n)))

where list-get-element is defined as it was defined in Chapter 5.

Another strategy for defining the Fibonacci sequence is to first define a
procedure that merges two (possibly infinite) lists, and then define the Fi-
bonacci sequence in terms of itself. The merge-lists procedure combines el-
ements in two lists using an input procedure.

2This example is based on Structure and Interpretation of Computer Programs, Section 3.5.2,
which also presents several other examples of interesting programs constructed using de-
layed evaluation.



326 13.3. Lazy Programming

(define merge-lists
(lambda (Ist1 Ist2 proc)
(if (null? Ist1) null
(if (null? Ist2) null
(cons (proc (car Ist1) (car Ist2))
(merge-lists (cdr Ist1) (cdr Ist2) proc))))))

We can think of the Fibonacci sequence as the combination of two sequences,
starting with the 0 and 1 base cases, combined using addition where the
second sequence is offset by one position. This allows us to define the Fi-
bonacci sequence without needing a separate generator procedure:

(define fibos (cons O (cons 1 (merge-lists fibos (cdr fibos) +))))

The sequence is defined to start with 0 and 1 as the first two elements. The
following elements are the result of merging fibos and (cdr fibos) using the
+ procedure. This definition relies heavily on lazy evaluation; otherwise,
the evaluation of (merge-lists fibos (cdr fibos) +) would never terminate: the
input lists are effectively infinite.

Exercise 13.1. Define the sequence of factorials as an infinite list using
delayed evaluation.

Exercise 13.2. Describe the infinite list defined by each of the following
definitions. (Check your answers by evaluating the expressions in Lazy-
Charme.)

a. (define p (cons 1 (merge-lists p p +)))
b. (

c. (define twos (cons 2 twos))
d. (

define t (cons 1 (merge-lists t (merge-lists t t +) +)))

define doubles (merge-lists (ints-from 1) twos *))

Exercise 13.3. A simple procedure known as the Sieve of Eratosthenes
for finding prime numbers was created by Eratosthenes, an ancient Greek
mathematician and astronomer. The procedure imagines starting with an
(infinite) list of all the integers starting from 2. Then, it repeats the following
two steps forever:

1. Circle the first number that is not crossed off; it is prime.
2. Cross off all numbers that are multiples of the circled number.

To carry out the procedure in practice, of course, the initial list of numbers



Chapter 13. Laziness 327

must be finite, otherwise it would take forever to cross off all the multiples
of 2. But, with delayed evaluation, we can implement the Sieve procedure
on an effectively infinite list.

Implement the sieve procedure using lists with lazy evaluation. You may
find the list-filter and merge-lists procedures useful, but will probably find it
necessary to define some additional procedures.

13.4 Summary

We can produce new languages by changing the evaluation rules of an in-
terpreter. Changing the evaluation rules changes what programs mean,
and enables new approaches to solving problems.

Lazy evaluation increases the expressiveness of a language by supporting
delayed evaluation. The main disadvantage of lazy evaluation is it makes
the evaluation rules more complex. This makes it somewhat more complex
to build an interpreter, but more importantly, makes it more difficult for
humans to understand and reason about programs.

I think that there is far too much work done in the world, that im-
mense harm is caused by the belief that work is virtuous, and that
what needs to be preached in modern industrial countries is quite dif-
ferent from what always has been preached. Everyone knows the story
of the traveler in Naples who saw twelve beggars lying in the sun
(it was before the days of Mussolini), and offered a lira to the laziest
of them. Eleven of them jumped up to claim it, so he gave it to the
twelfth. This traveler was on the right lines. But in countries which
do not enjoy Mediterranean sunshine idleness is more difficult, and a
great public propaganda will be required to inaugurate it. ... All this
is only preliminary. I want to say, in all seriousness, that a great deal
of harm is being done in the modern world by belief in the virtuous-
ness of work, and that the road to happiness and prosperity lies in an
organized diminution of work.

First of all: what is work? Work is of two kinds: first, altering the
position of matter at or near the earth’s surface relatively to other such
matter; second, telling other people to do so. The first kind is unpleas-
ant and ill paid; the second is pleasant and highly paid. The second
kind is capable of indefinite extension: there are not only those who
give orders, but those who give advice as to what orders should be
given. Usually two opposite kinds of advice are given simultaneously
by two organized bodies of men; this is called politics.

Eratosthenes



328 13.4. Summary

Bertrand Russell, Inn Praise of Idleness, 1932



